Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 9(8): e19003, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37636430

RESUMEN

In this study an improved version of the Discrete RVE Automation and Generation Framework, also called DRAGen, is presented. The Framework incorporates a generator for Representative Volume Elements (RVEs). Several complex microstructure features, extracted from real microstructures, have been added to the generator, to enable it to generate RVEs with realistic microstructures. DRAGen is now capable of reading trained neural networks as well as .csv-files as input data for the microstructure generation. Furthermore, features such as pores and inclusions, martensite bands, hierarchical substructures, and crystallographic textures can be reconstructed in the RVEs. Besides the features, the functionality for different solvers was introduced. Therefore, the code was extended by modules for the generation of Finite Element (FE) and spectral solver input files. DRAGen now has the ability to create models for three powerful multiphysics frameworks used in the community: DAMASK, Abaqus and MOOSE. The evaluation of the features, as well as the simulations performed on sample models, show that the new version of DRAGen is a very powerful tool with flexible applicability for scientists in the ICME community. Also, due to the modular architecture of the project, the code can easily be expanded with features of interest. Therefore, it delivers a variety of functions and possible outputs, which offers researchers a broad spectrum of microstructures that can be used in microstructure studies or microstructure design developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...