Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38366196

RESUMEN

PURPOSE: We hypothesized that severe tau burden in brain regions involved in direct or indirect pathways of the basal ganglia correlate with more severe striatal dopamine deficiency in four-repeat (4R) tauopathies. Therefore, we correlated [18F]PI-2620 tau-positron-emission-tomography (PET) imaging with [123I]-Ioflupane single-photon-emission-computed tomography (SPECT) for dopamine transporter (DaT) availability. METHODS: Thirty-eight patients with clinically diagnosed 4R-tauopathies (21 male; 69.0 ± 8.5 years) and 15 patients with clinically diagnosed α-synucleinopathies (8 male; 66.1 ± 10.3 years) who underwent [18F]PI-2620 tau-PET and DaT-SPECT imaging with a time gap of 3 ± 5 months were evaluated. Regional Tau-PET signals and DaT availability as well as their principal components were correlated in patients with 4R-tauopathies and α-synucleinopathies. Both biomarkers and the residuals of their association were correlated with clinical severity scores in 4R-tauopathies. RESULTS: In patients with 4R-tauopathies, [18F]PI-2620 binding in basal ganglia and midbrain regions was negatively associated with striatal DaT availability (i.e. globus pallidus internus and putamen (ß = - 0.464, p = 0.006, Durbin-Watson statistics = 1.824) in a multiple regression model. Contrarily, [18F]PI-2620 binding in the dentate nucleus showed no significant regression factor with DaT availability in the striatum (ß = 0.078, p = 0.662, Durbin-Watson statistics = 1.686). Patients with α-synucleinopathies did not indicate any regional associations between [18F]PI-2620-binding and DaT availability. Higher DaT-SPECT binding relative to tau burden was associated with better clinical performance (ß = - 0.522, p = 0.011, Durbin-Watson statistics = 2.663) in patients with 4R-tauopathies. CONCLUSION: Tau burden in brain regions involved in dopaminergic pathways is associated with aggravated dopaminergic dysfunction in patients with clinically diagnosed primary tauopathies. The ability to sustain dopamine transmission despite tau accumulation may preserve motor function.

2.
Neuroimage ; 286: 120513, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191101

RESUMEN

Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (ß-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas ß-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different ß-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Ratones , Animales , Fluorodesoxiglucosa F18/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Tauopatías/patología , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
3.
Eur J Nucl Med Mol Imaging ; 51(4): 1023-1034, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37971501

RESUMEN

PURPOSE: Metabolic network analysis of FDG-PET utilizes an index of inter-regional correlation of resting state glucose metabolism and has been proven to provide complementary information regarding the disease process in parkinsonian syndromes. The goals of this study were (i) to evaluate pattern similarities of glucose metabolism and network connectivity in dementia with Lewy bodies (DLB) subjects with subthreshold dopaminergic loss compared to advanced disease stages and to (ii) investigate metabolic network alterations of FDG-PET for discrimination of patients with early DLB from other neurodegenerative disorders (Alzheimer's disease, Parkinson's disease, multiple system atrophy) at individual patient level via principal component analysis (PCA). METHODS: FDG-PETs of subjects with probable or possible DLB (n = 22) without significant dopamine deficiency (z-score < 2 in putamen binding loss on DaT-SPECT compared to healthy controls (HC)) were scaled by global-mean, prior to volume-of-interest-based analyses of relative glucose metabolism. Single region metabolic changes and network connectivity changes were compared against HC (n = 23) and against DLB subjects with significant dopamine deficiency (n = 86). PCA was applied to test discrimination of patients with DLB from disease controls (n = 101) at individual patient level. RESULTS: Similar patterns of hypo- (parietal- and occipital cortex) and hypermetabolism (basal ganglia, limbic system, motor cortices) were observed in DLB patients with and without significant dopamine deficiency when compared to HC. Metabolic connectivity alterations correlated between DLB patients with and without significant dopamine deficiency (R2 = 0.597, p < 0.01). A PCA trained by DLB patients with dopamine deficiency and HC discriminated DLB patients without significant dopaminergic loss from other neurodegenerative parkinsonian disorders at individual patient level (area-under-the-curve (AUC): 0.912). CONCLUSION: Disease-specific patterns of altered glucose metabolism and altered metabolic networks are present in DLB subjects without significant dopaminergic loss. Metabolic network alterations in FDG-PET can act as a supporting biomarker in the subgroup of DLB patients without significant dopaminergic loss at symptoms onset.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad por Cuerpos de Lewy , Humanos , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Dopamina/metabolismo , Fluorodesoxiglucosa F18 , Enfermedad de Alzheimer/metabolismo , Tomografía de Emisión de Positrones , Glucosa/metabolismo , Redes y Vías Metabólicas
4.
Nuklearmedizin ; 62(5): 296-305, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37802057

RESUMEN

BACKGROUND: Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS: The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION: AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS: · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making..


Asunto(s)
Inteligencia Artificial , Radiología , Aprendizaje Automático , Imagen Multimodal
6.
Mol Psychiatry ; 28(10): 4438-4450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37495886

RESUMEN

ß-amyloid (Aß) and tau aggregation as well as neuronal injury and atrophy (ATN) are the major hallmarks of Alzheimer's disease (AD), and biomarkers for these hallmarks have been linked to neuroinflammation. However, the detailed regional associations of these biomarkers with microglial activation in individual patients remain to be elucidated. We investigated a cohort of 55 patients with AD and primary tauopathies and 10 healthy controls that underwent TSPO-, Aß-, tau-, and perfusion-surrogate-PET, as well as structural MRI. Z-score deviations for 246 brain regions were calculated and biomarker contributions of Aß (A), tau (T), perfusion (N1), and gray matter atrophy (N2) to microglial activation (TSPO, I) were calculated for each individual subject. Individual ATN-related microglial activation was correlated with clinical performance and CSF soluble TREM2 (sTREM2) concentrations. In typical and atypical AD, regional tau was stronger and more frequently associated with microglial activation when compared to regional Aß (AD: ßT = 0.412 ± 0.196 vs. ßA = 0.142 ± 0.123, p < 0.001; AD-CBS: ßT = 0.385 ± 0.176 vs. ßA = 0.131 ± 0.186, p = 0.031). The strong association between regional tau and microglia reproduced well in primary tauopathies (ßT = 0.418 ± 0.154). Stronger individual associations between tau and microglial activation were associated with poorer clinical performance. In patients with 4RT, sTREM2 levels showed a positive association with tau-related microglial activation. Tau pathology has strong regional associations with microglial activation in primary and secondary tauopathies. Tau and Aß related microglial response indices may serve as a two-dimensional in vivo assessment of neuroinflammation in neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Microglía/patología , Enfermedades Neuroinflamatorias , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides , Atrofia/patología , Biomarcadores , Proteínas tau , Receptores de GABA
7.
Eur J Nucl Med Mol Imaging ; 50(11): 3390-3399, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358620

RESUMEN

BACKGROUND: Somatostatin-receptor (SSTR)-targeted PET/CT provides important clinical information in addition to standard imaging in meningioma patients. [18F]SiTATE is a novel, 18F-labeled SSTR-targeting peptide with superior imaging properties according to preliminary data. We provide the first [18F]SiTATE PET/CT data of a large cohort of meningioma patients. METHODS: Patients with known or suspected meningioma undergoing [18F]SiTATE PET/CT were included. Uptake intensity (SUV) of meningiomas, non-meningioma lesions, and healthy organs were assessed using a 50% isocontour volume of interest (VOI) or a spherical VOI, respectively. Also, trans-osseous extension on PET/CT was assessed. RESULTS: A total of 107 patients with 117 [18F]SiTATE PET/CT scans were included. Overall, 231 meningioma lesions and 61 non-meningioma lesions (e.g., post-therapeutic changes) were analyzed. Physiological uptake was lowest in healthy brain tissue, followed by bone marrow, parotid, and pituitary (SUVmean 0.06 ± 0.04 vs. 1.4 ± 0.9 vs. 1.6 ± 1.0 vs. 9.8 ± 4.6; p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6 ± 10.6 vs. 4.0 ± 3.3, p < 0.001). Meningiomas showed significantly higher uptake than non-meningioma lesions (SUVmax 11.6±10.6 vs. 4.0±3.3, p<0.001). 93/231 (40.3%) meningiomas showed partial trans-osseous extension and 34/231 (14.7%) predominant intra-osseous extension. 59/231 (25.6%) meningioma lesions found on PET/CT had not been reported on previous standard imaging. CONCLUSION: This is the first PET/CT study using an 18F-labeled SSTR-ligand in meningioma patients: [18F]SiTATE provides extraordinary contrast in meningioma compared to healthy tissue and non-meningioma lesions, which leads to a high detection rate of so far unknown meningioma sites and osseous involvement. Having in mind the advantageous logistic features of 18F-labeled compared to 68Ga-labeled compounds (e.g., longer half-life and large-badge production), [18F]SiTATE has the potential to foster a widespread use of SSTR-targeted imaging in neuro-oncology.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Compuestos Organometálicos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Meningioma/diagnóstico por imagen , Meningioma/patología , Receptores de Somatostatina , Péptidos , Neoplasias Meníngeas/diagnóstico por imagen
8.
Cancer Imaging ; 23(1): 41, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098632

RESUMEN

BACKGROUND: The aim of this retrospective study was to compare the diagnostic accuracy of somatostatin receptor (SSR)-PET/CT to liver MRI as reference standard in the evaluation of hepatic involvement in neuroendocrine tumors (NET). METHODS: An institutional database was screened for "SSR" imaging studies between 2006 and 2021. 1000 NET Patients (grade 1/2) with 2383 SSR-PET/CT studies and matching liver MRI in an interval of +3 months were identified. Medical reports of SSR-PET/CT and MRI were retrospectively evaluated regarding hepatic involvement and either confirmed by both or observed in MRI but not in SSR-PET/CT (false-negative) or in SSR-PET but not in MRI (false-positive). RESULTS: Metastatic hepatic involvement was reported in 1650 (69.2%) of the total 2383 SSR-PET/CT imaging studies, whereas MRI detected hepatic involvement in 1685 (70.7%) cases. There were 51 (2.1%) false-negative and 16 (0.7%) false-positive cases. In case of discrepant reports, MRI and PET/CT were reviewed side by side for consensus reading. SSR-PET/CT demonstrated a sensitivity of 97.0% (95%CI: 96.0%, 97.7%), a specificity of 97.7% (95%CI: 96.3%, 98.7%), a PPV of 99.0% (95%CI: 98.4%, 99.4%) and NPV of 93.0% (95%CI: 91.0, 94.8%) in identifying hepatic involvement. The most frequent reason for false-negative results was the small size of lesions with the majority < 0.6 cm. CONCLUSION: This study confirms the high diagnostic accuracy of SSR-PET/CT in the detection of hepatic involvement in NET patients based on a patient-based analysis of metastatic hepatic involvement with a high sensitivity and specificity using liver MRI imaging as reference standard. However, one should be aware of possible pitfalls when a single imaging method is used in evaluating neuroendocrine liver metastases in patients.


Asunto(s)
Neoplasias Hepáticas , Tumores Neuroendocrinos , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Tomografía de Emisión de Positrones/métodos , Estudios Retrospectivos , Neoplasias Hepáticas/patología , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/patología , Imagen por Resonancia Magnética/métodos , Sensibilidad y Especificidad
9.
Eur Radiol ; 33(5): 3416-3424, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36964768

RESUMEN

OBJECTIVES: The recently proposed standardized reporting and data system for somatostatin receptor (SSTR)-targeted PET/CT SSTR-RADS 1.0 showed promising first results in the assessment of diagnosis and treatment planning with peptide receptor radionuclide therapy (PRRT) in neuroendocrine tumors (NET). This study aimed to determine the intra- and interreader agreement of SSTR-RADS 1.0. METHODS: SSTR-PET/CT scans of 100 patients were independently evaluated by 4 readers with different levels of expertise according to the SSTR-RADS 1.0 criteria at 2 time points within 6 weeks. For each scan, a maximum of five target lesions were freely chosen by each reader (not more than three lesions per organ) and stratified according to the SSTR-RADS 1.0 criteria. Overall scan score and binary decision on PRRT were assessed. Intra- and interreader agreement was determined using the intraclass correlation coefficient (ICC). RESULTS: Interreader agreement using SSTR-RADS 1.0 for identical target lesions (ICC ≥ 0.91) and overall scan score (ICC ≥ 0.93) was excellent. The decision to state "functional imaging fulfills requirements for PRRT and qualifies patient as potential candidate for PRRT" also demonstrated excellent agreement among all readers (ICC ≥ 0.86). Intrareader agreement was excellent even among different experience levels when comparing target lesion-based scores (ICC ≥ 0.98), overall scan score (ICC ≥ 0.93), and decision for PRRT (ICC ≥ 0.88). CONCLUSION: SSTR-RADS 1.0 represents a highly reproducible and accurate system for stratifying SSTR-targeted PET/CT scans with high intra- and interreader agreement. The system is a promising approach to standardize the diagnosis and treatment planning in NET patients. KEY POINTS: • SSTR-RADS 1.0 offers high reproducibility and accuracy. • SSTR-RADS 1.0 is a promising method to standardize diagnosis and treatment planning for patients with NET.


Asunto(s)
Tumores Neuroendocrinos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Receptores de Somatostatina , Tumores Neuroendocrinos/diagnóstico por imagen , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/patología , Reproducibilidad de los Resultados , Cintigrafía
10.
J Neuroinflammation ; 20(1): 68, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906584

RESUMEN

OBJECTIVES: Reactive gliosis is a common pathological hallmark of CNS pathology resulting from neurodegeneration and neuroinflammation. In this study we investigate the capability of a novel monoamine oxidase B (MAO-B) PET ligand to monitor reactive astrogliosis in a transgenic mouse model of Alzheimer`s disease (AD). Furthermore, we performed a pilot study in patients with a range of neurodegenerative and neuroinflammatory conditions. METHODS: A cross-sectional cohort of 24 transgenic (PS2APP) and 25 wild-type mice (age range: 4.3-21.0 months) underwent 60 min dynamic [18F]fluorodeprenyl-D2 ([18F]F-DED), static 18 kDa translocator protein (TSPO, [18F]GE-180) and ß-amyloid ([18F]florbetaben) PET imaging. Quantification was performed via image derived input function (IDIF, cardiac input), simplified non-invasive reference tissue modelling (SRTM2, DVR) and late-phase standardized uptake value ratios (SUVr). Immunohistochemical (IHC) analyses of glial fibrillary acidic protein (GFAP) and MAO-B were performed to validate PET imaging by gold standard assessments. Patients belonging to the Alzheimer's disease continuum (AD, n = 2), Parkinson's disease (PD, n = 2), multiple system atrophy (MSA, n = 2), autoimmune encephalitis (n = 1), oligodendroglioma (n = 1) and one healthy control underwent 60 min dynamic [18F]F-DED PET and the data were analyzed using equivalent quantification strategies. RESULTS: We selected the cerebellum as a pseudo-reference region based on the immunohistochemical comparison of age-matched PS2APP and WT mice. Subsequent PET imaging revealed that PS2APP mice showed elevated hippocampal and thalamic [18F]F-DED DVR when compared to age-matched WT mice at 5 months (thalamus: + 4.3%; p = 0.048), 13 months (hippocampus: + 7.6%, p = 0.022) and 19 months (hippocampus: + 12.3%, p < 0.0001; thalamus: + 15.2%, p < 0.0001). Specific [18F]F-DED DVR increases of PS2APP mice occurred earlier when compared to signal alterations in TSPO and ß-amyloid PET and [18F]F-DED DVR correlated with quantitative immunohistochemistry (hippocampus: R = 0.720, p < 0.001; thalamus: R = 0.727, p = 0.002). Preliminary experience in patients showed [18F]F-DED VT and SUVr patterns, matching the expected topology of reactive astrogliosis in neurodegenerative (MSA) and neuroinflammatory conditions, whereas the patient with oligodendroglioma and the healthy control indicated [18F]F-DED binding following the known physiological MAO-B expression in brain. CONCLUSIONS: [18F]F-DED PET imaging is a promising approach to assess reactive astrogliosis in AD mouse models and patients with neurological diseases.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Oligodendroglioma , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudios Transversales , Gliosis/patología , Inflamación/metabolismo , Ratones Transgénicos , Monoaminooxidasa/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Oligodendroglioma/metabolismo , Oligodendroglioma/patología , Proyectos Piloto , Tomografía de Emisión de Positrones/métodos , Receptores de GABA/metabolismo
11.
Front Oncol ; 13: 992316, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36793617

RESUMEN

Purpose: Somatostatin analogues (SSA) are frequently used in the treatment of neuroendocrine tumours. Recently, [18F]SiTATE entered the field of somatostatin receptor (SSR) positron emission tomography (PET)/computed tomography (CT) imaging. The purpose of this study was to compare the SSR-expression of differentiated gastroentero-pancreatic neuroendocrine tumours (GEP-NET) measured by [18F]SiTATE-PET/CT in patients with and without previous treatment with long-acting SSAs to evaluate if SSA treatment needs to be paused prior to [18F]SiTATE-PET/CT. Methods: 77 patients were examined with standardised [18F]SiTATE-PET/CT within clinical routine: 40 patients with long-acting SSAs up to 28 days prior to PET/CT examination and 37 patients without pre-treatment with SSAs. Maximum and mean standardized uptake values (SUVmax and SUVmean) of tumours and metastases (liver, lymphnode, mesenteric/peritoneal and bones) as well as representative background tissues (liver, spleen, adrenal gland, blood pool, small intestine, lung, bone) were measured, SUV ratios (SUVR) were calculated between tumours/metastases and liver, likewise between tumours/metastases and corresponding specific background, and compared between the two groups. Results: SUVmean of liver (5.4 ± 1.5 vs. 6.8 ± 1.8) and spleen (17.5 ± 6.8 vs. 36.7 ± 10.3) were significantly lower (p < 0.001) and SUVmean of blood pool (1.7 ± 0.6 vs. 1.3 ± 0.3) was significantly higher (p < 0.001) in patients with SSA pre-treatment compared to patients without. No significant differences between tumour-to-liver and specific tumour-to-background SUVRs were observed between both groups (all p > 0.05). Conclusion: In patients previously treated with SSAs, a significantly lower SSR expression ([18F]SiTATE uptake) in normal liver and spleen tissue was observed, as previously reported for 68Ga-labelled SSAs, without significant reduction of tumour-to-background contrast. Therefore, there is no evidence that SSA treatment needs to be paused prior to [18F]SiTATE-PET/CT.

12.
EJNMMI Phys ; 10(1): 11, 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36757516

RESUMEN

BACKGROUND: 177Lu-PSMA therapy has been successfully used to prolong the survival of patients with metastatic castration-resistant prostate cancer. Patient-specific dosimetry based on serial quantitative SPECT/CT imaging can support the understanding of dose-effect relationships. However, multiple SPECT/CT measurements can be challenging for patients, which motivates the investigation of efficient sampling schedules and their impact on dosimetry. In this study, different time samplings with respect to the number and timing of SPECT/CT acquisitions with and without a late measurement were investigated. MATERIALS AND METHODS: In total, 43 lesions and 10 kidneys of 5 patients receiving 177Lu-PSMA-I&T therapy were investigated. Whole-body SPECT/CT measurements were performed at 1, 2, 3 and 7 days post-injection. For both lesions (isocontour-based segmentation) and kidneys (CT-based segmentation), a reference model was employed including all four time points. To identify the best-matching fit function out of a pre-defined set of models, visual inspection, coefficients of variation and sum of squared errors were considered as goodness-of-fit criteria. Biologically effective doses (BEDs) calculated with different time samplings (days 1, 2, 3/1, 2, 7/1, 3, 7/2, 3, 7 and 1, 2/1, 3/1, 7) were compared to the reference. RESULTS: The best-fit function was found to be a mono-exponential model for lesions and a bi-exponential model with a population-based parameter and two free parameters for kidneys. The BEDs calculated with the time sampling 1, 3, 7 days showed the lowest deviations from the reference for lesions with 4 ± 5%. Without day 7, still 86% of all lesions showed deviations from the reference < 10%. The outlier deviations showed a positive correlation with the effective half-life of the respective lesions. For kidneys, including days 1, 2, 3 achieved the best results with 0 ± 1%. Generally, deviations for kidneys were found to be small for all time samplings (max. 13%). CONCLUSIONS: For combined optimization of the SPECT/CT time sampling for kidney and lesion dosimetry during 177Lu-PSMA-I&T therapy, the sampling with days 1, 3, 7 showed the smallest deviation from the reference. Without a late acquisition, using the schedule with days 1, 2, 3 is likewise feasible.

13.
J Nucl Med ; 64(6): 918-923, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36732055

RESUMEN

Salvage elective nodal radiotherapy (ENRT) is a treatment option for patients with biochemically persistent or recurrent prostate cancer who have lymph node metastases (LNs) after prostatectomy. Possible ENRT templates were proposed by the Radiation Therapy Oncology Group (RTOG; 2009), the PIVOTAL trialists (2015), and the NRG Oncology Group (2021). The goal of this study was to analyze the distribution of prostate-specific membrane antigen (PSMA) PET/CT-positive LNs and to compare the templates regarding their LN coverage. Methods: We analyzed the PSMA PET/CT scans of 105 patients with PET-positive LNs treated with salvage ENRT from 2014 to 2019. All LNs were mapped in an exemplary dataset, classified by region, and assessed with regard to their potential coverage by the 3 ENRT templates. The primary endpoint was the number of missed LNs. The secondary endpoint was the number of patients with full coverage. To compare the templates, a t test and McNemar test were used. Results: Three hundred thirty-five LNs were contoured (3.19 per patient; 95% CI, 2.43-3.95). Most frequently, LNs were seen in the internal iliac (n = 94, 28.1%), external iliac (n = 60, 17.9%), periaortic (n = 58, 17.3%), common iliac (n = 55, 16.4%), perirectal (n = 26, 7.8%), and presacral (n = 19, 5.7%) regions. The NRG template missed fewer LNs per patient (1.01, 31.7%) than the RTOG (1.28, 40.1%, P < 0.001) and PIVOTAL templates (1.19, 37.3%, P = 0.003). No difference was observed in the number of patients with full coverage of all LNs: 52 (49.5%) with the NRG template versus 50 (47.6%) with the RTOG (P = 0.625) and 49 (46.7%) with the PIVOTAL template (P = 0.250). Conclusion: The NRG template showed better coverage than the RTOG and PIVOTAL templates. Nevertheless, in this cohort, it would have missed almost one third of all contoured LNs and would have resulted in incomplete coverage in half the patients. This result underlines the importance of advanced imaging, such as PSMA PET/CT scans, before salvage ENRT and shows the need for further individualization of ENRT fields.


Asunto(s)
Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata , Masculino , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Isótopos de Galio , Radioisótopos de Galio , Recurrencia Local de Neoplasia/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Prostatectomía , Ganglios Linfáticos/patología
14.
J Neuroinflammation ; 20(1): 47, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36829182

RESUMEN

AIM: We aimed to investigate the impact of microglial activity and microglial FDG uptake on metabolic connectivity, since microglial activation states determine FDG-PET alterations. Metabolic connectivity refers to a concept of interacting metabolic brain regions and receives growing interest in approaching complex cerebral metabolic networks in neurodegenerative diseases. However, underlying sources of metabolic connectivity remain to be elucidated. MATERIALS AND METHODS: We analyzed metabolic networks measured by interregional correlation coefficients (ICCs) of FDG-PET scans in WT mice and in mice with mutations in progranulin (Grn) or triggering receptor expressed on myeloid cells 2 (Trem2) knockouts (-/-) as well as in double mutant Grn-/-/Trem2-/- mice. We selected those rodent models as they represent opposite microglial signatures with disease associated microglia in Grn-/- mice and microglia locked in a homeostatic state in Trem2-/- mice; however, both resulting in lower glucose uptake of the brain. The direct influence of microglia on metabolic networks was further determined by microglia depletion using a CSF1R inhibitor in WT mice at two different ages. Within maps of global mean scaled regional FDG uptake, 24 pre-established volumes of interest were applied and assigned to either cortical or subcortical networks. ICCs of all region pairs were calculated and z-transformed prior to group comparisons. FDG uptake of neurons, microglia, and astrocytes was determined in Grn-/- and WT mice via assessment of single cell tracer uptake (scRadiotracing). RESULTS: Microglia depletion by CSF1R inhibition resulted in a strong decrease of metabolic connectivity defined by decrease of mean cortical ICCs in WT mice at both ages studied (6-7 m; p = 0.0148, 9-10 m; p = 0.0191), when compared to vehicle-treated age-matched WT mice. Grn-/-, Trem2-/- and Grn-/-/Trem2-/- mice all displayed reduced FDG-PET signals when compared to WT mice. However, when analyzing metabolic networks, a distinct increase of ICCs was observed in Grn-/- mice when compared to WT mice in cortical (p < 0.0001) and hippocampal (p < 0.0001) networks. In contrast, Trem2-/- mice did not show significant alterations in metabolic connectivity when compared to WT. Furthermore, the increased metabolic connectivity in Grn-/- mice was completely suppressed in Grn-/-/Trem2-/- mice. Grn-/- mice exhibited a severe loss of neuronal FDG uptake (- 61%, p < 0.0001) which shifted allocation of cellular brain FDG uptake to microglia (42% in Grn-/- vs. 22% in WT). CONCLUSIONS: Presence, absence, and activation of microglia have a strong impact on metabolic connectivity of the mouse brain. Enhanced metabolic connectivity is associated with increased microglial FDG allocation.


Asunto(s)
Fluorodesoxiglucosa F18 , Microglía , Animales , Ratones , Microglía/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Progranulinas/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo
15.
J Natl Compr Canc Netw ; 21(1): 43-50.e2, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634610

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer poses a therapeutic challenge with poor prognosis. The VISION trial showed prolonged progression-free and overall survival in patients treated with lutetium Lu 177 vipivotide tetraxetan (177Lu-PSMA-617) radioligand therapy compared with using the standard of care (SoC) alone. The objective of this study was to determine the cost-effectiveness of 177Lu-PSMA-617 treatment compared with SoC therapy. METHODS: A partitioned survival model was developed using data from the VISION trial, which included overall and progression-free survival and treatment regimens for 177Lu-PSMA-617 and SoC. Treatment costs, utilities for health states, and adverse events were derived from public databases and the literature. Because 177Lu-PSMA-617 was only recently approved, costs for treatment were extrapolated from 177Lu-DOTATATE. Outcome measurements included the incremental cost, effectiveness, and cost-effectiveness ratio. The analysis was performed in a US setting from a healthcare system perspective over the lifetime horizon of 60 months. The willingness-to-pay threshold was set to $50,000, $100,000, and $200,000 per quality-adjusted life years (QALYs). RESULTS: The 177Lu-PSMA-617 group was estimated to gain 0.42 incremental QALYs. Treatment using 177Lu-PSMA-617 led to an increase in costs compared with SoC ($169,110 vs $85,398). The incremental cost, effectiveness, and cost-effectiveness ratio for 177Lu-PSMA-617 therapy was $200,708/QALYs. Sensitivity analysis showed robustness of the model regarding various parameters, which remained cost-effective at all lower and upper parameter bounds. In probabilistic sensitivity analysis using Monte Carlo simulation with 10,000 iterations, therapy using 177Lu-PSMA-617 was determined as the cost-effective strategy in 37.14% of all iterations at a willingness-to-pay threshold of $200,000/QALYs. CONCLUSIONS: Treatment using 177Lu-PSMA-617 was estimated to add a notable clinical benefit over SoC alone. Based on the model results, radioligand therapy represents a treatment strategy for patients with metastatic castration-resistant prostate cancer with cost-effectiveness in certain scenarios.


Asunto(s)
Lutecio , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Lutecio/uso terapéutico , Lutecio/efectos adversos , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Análisis de Costo-Efectividad , Dipéptidos/uso terapéutico , Dipéptidos/efectos adversos , Antígeno Prostático Específico , Resultado del Tratamiento , Análisis Costo-Beneficio
16.
Eur J Nucl Med Mol Imaging ; 50(5): 1280-1290, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36629878

RESUMEN

PURPOSE: Quantitative SPECT for patient-specific dosimetry is a valuable tool in the scope of radionuclide therapy, although its clinical application for 225Ac-based treatments may be limited due to low therapeutic activities. Therefore, the aim of this study was to demonstrate the feasibility of clinical quantitative low-count SPECT imaging during [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T treatment. METHODS: Eight prostate cancer patients (1000 MBq/8 MBq [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T) received a single-bed quantitative 177Lu/225Ac SPECT/CT acquisition (1 h) at 24 h post treatment (high-energy collimator, 16 projections p. head à 3.5 min, 128 × 128 pixel). The gamma peak at 440 keV (width: 10%) of the progeny 213Bi was imaged along with the peak at 208 keV (width: 15%) of 177Lu. Quantification included CT-based attenuation and window-based scatter correction plus resolution modelling. Gaussian post-filtering with a full-width-half-maximum of 30 mm and 40-45 mm was employed to match the signal-to-noise ratio of 225Ac and 177Lu, respectively. RESULTS: Kidney (r = 0.96, p < 0.01) and lesion (r = 0.94, p < 0.01) SUV for [177Lu]Lu-PSMA-I&T and [225Ac]Ac-PSMA-I&T showed a strong and significant correlation. Kidney SUV were significantly higher (p < 0.01) for [225Ac]Ac-PSMA-I&T (2.5 ± 0.8 vs. 2.1 ± 0.9), while for [177Lu]Lu-PSMA-I&T lesion SUV were significantly higher (p = 0.03; 1.8 ± 1.1 vs. 2.1 ± 1.5). For absorbed dose estimates, significant differences regarding the kidneys remained, while no significant differences for lesion dosimetry were found. CONCLUSION: Quantitative low-count SPECT imaging of the peak at 440 keV during [225Ac]Ac-PSMA-I&T therapy is feasible. Multi-isotope imaging for [177Lu]Lu-PSMA-I&T/[225Ac]Ac-PSMA-I&T therapy indicates accumulation of free 213Bi in the kidneys.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Radiofármacos , Humanos , Masculino , Dipéptidos/uso terapéutico , Compuestos Heterocíclicos con 1 Anillo/uso terapéutico , Isótopos , Antígeno Prostático Específico , Neoplasias de la Próstata Resistentes a la Castración/diagnóstico por imagen , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radiofármacos/uso terapéutico , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único
17.
Eur J Nucl Med Mol Imaging ; 50(5): 1384-1394, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36572740

RESUMEN

PURPOSE: Characteristic features of amyloid-PET (A), tau-PET (T), and FDG-PET (N) can serve for the A/T/N classification of neurodegenerative diseases. Recent studies showed that the early, perfusion-weighted phases of amyloid- or tau-PET recordings serve to detect cerebrometabolic deficits equally to FDG-PET, therefore providing a surrogate of neuronal injury. As such, two channels of diagnostic information can be obtained in the setting of a single PET scan. However, there has hitherto been no comparison of early-phase amyloid- and tau-PET as surrogates for deficits in perfusion/metabolism. Therefore, we undertook to compare [18F]flutemetamol-amyloid-PET and [18F]PI-2620 tau-PET as "one-stop shop" dual purpose tracers for the detection of neurodegenerative disease. METHODS: We obtained early-phase PET recordings with [18F]PI-2620 (0.5-2.5 min p.i.) and [18F]flutemetamol (0-10 min p.i.) in 64 patients with suspected neurodegenerative disease. We contrasted global mean normalized images (SUVr) in the patients with a normal cohort of 15 volunteers without evidence of increased pathology to ß-amyloid- and tau-PET examinations. Regional group differences of tracer uptake (z-scores) of 246 Brainnetome volumes of interest were calculated for both tracers, and the correlations of the z-scores were evaluated using Pearson's correlation coefficient. Lobar compartments, regions with significant neuronal injury (z-scores < - 3), and patients with different neurodegenerative disease entities (e.g., Alzheimer's disease or 4R-tauopathies) served for subgroup analysis. Additionally, we used partial regression to correlate regional perfusion alterations with clinical scores in cognition tests. RESULTS: The z-scores of perfusion-weighted images of both tracers showed high correlations across the brain, especially in the frontal and parietal lobes, which were the brain regions with pronounced perfusion deficit in the patient group (R = 0.83 ± 0.08; range, 0.61-0.95). Z-scores of individual patients correlated well by region (R = 0.57 ± 0.15; range, 0.16-0.90), notably when significant perfusion deficits were present (R = 0.66 ± 0.15; range, 0.28-0.90). CONCLUSION: The early perfusion phases of [18F]PI-2620 tau- and [18F]flutemetamol-amyloid-PET are roughly equivalent indices of perfusion defect indicative of regional and lobar neuronal injury in patients with various neurodegenerative diseases. As such, either tracer may serve for two diagnostic channels by assessment of amyloid/tau status and neuronal activity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Fluorodesoxiglucosa F18 , Enfermedad de Alzheimer/diagnóstico por imagen , Amiloide/metabolismo , Compuestos de Anilina , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Perfusión
19.
Eur J Nucl Med Mol Imaging ; 50(2): 423-434, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36102964

RESUMEN

PURPOSE: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. METHODS: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). RESULTS: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). CONCLUSION: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression.


Asunto(s)
Enfermedad de Alzheimer , Degeneración Corticobasal , Parálisis Supranuclear Progresiva , Anciano , Femenino , Humanos , Persona de Mediana Edad , Actividades Cotidianas , Enfermedad de Alzheimer/complicaciones , Degeneración Corticobasal/diagnóstico por imagen , Enfermedades Neurodegenerativas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/diagnóstico por imagen
20.
Rofo ; 195(2): 105-114, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36170852

RESUMEN

BACKGROUND: Artificial intelligence (AI) applications have become increasingly relevant across a broad spectrum of settings in medical imaging. Due to the large amount of imaging data that is generated in oncological hybrid imaging, AI applications are desirable for lesion detection and characterization in primary staging, therapy monitoring, and recurrence detection. Given the rapid developments in machine learning (ML) and deep learning (DL) methods, the role of AI will have significant impact on the imaging workflow and will eventually improve clinical decision making and outcomes. METHODS AND RESULTS: The first part of this narrative review discusses current research with an introduction to artificial intelligence in oncological hybrid imaging and key concepts in data science. The second part reviews relevant examples with a focus on applications in oncology as well as discussion of challenges and current limitations. CONCLUSION: AI applications have the potential to leverage the diagnostic data stream with high efficiency and depth to facilitate automated lesion detection, characterization, and therapy monitoring to ultimately improve quality and efficiency throughout the medical imaging workflow. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based therapy guidance in oncology. However, significant challenges remain regarding application development, benchmarking, and clinical implementation. KEY POINTS: · Hybrid imaging generates a large amount of multimodality medical imaging data with high complexity and depth.. · Advanced tools are required to enable fast and cost-efficient processing along the whole radiology value chain.. · AI applications promise to facilitate the assessment of oncological disease in hybrid imaging with high quality and efficiency for lesion detection, characterization, and response assessment. The goal is to generate reproducible, structured, quantitative diagnostic data for evidence-based oncological therapy guidance.. · Selected applications in three oncological entities (lung, prostate, and neuroendocrine tumors) demonstrate how AI algorithms may impact imaging-based tasks in hybrid imaging and potentially guide clinical decision making.. CITATION FORMAT: · Feuerecker B, Heimer M, Geyer T et al. Artificial Intelligence in Oncological Hybrid Imaging. Fortschr Röntgenstr 2023; 195: 105 - 114.


Asunto(s)
Algoritmos , Inteligencia Artificial , Masculino , Humanos , Aprendizaje Automático , Oncología Médica , Imagen Multimodal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...