Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 731: 150370, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39047619

RESUMEN

Single-molecule techniques are highly sensitive tools that can reveal reaction intermediates often obscured in experiments involving large ensembles of molecules. Therefore, they provide unprecedented information on the mechanisms that control biomolecular reactions. Currently, one of the most significant single-molecule assays is Magnetic Tweezers (MT), which probes enzymatic reactions at high spatio-temporal resolutions on tens, if not hundreds, of molecules simultaneously. For high-resolution MT experiments, a short double-stranded DNA molecule (less than 2000 base pairs) is typically attached between a micron-sized superparamagnetic bead and a surface. The fabrication of such a substrate is key for successful single-molecule assays, and several papers have discussed the possibility of improving the fabrication of short DNA constructs. However, reported yields are usually low and require additional time-consuming purification steps (e.g., gel purification). In this paper, we propose the use of a Golden Gate Assembly assay that allows for the production of DNA constructs within minutes (starting from PCR products). We discuss how relevant parameters may affect the yield and offer single-molecule experimentalists a simple yet robust approach to fabricate DNA constructs.

2.
ACS Nano ; 18(23): 15067-15083, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38804165

RESUMEN

Processes of water condensation and desublimation on solid surfaces are ubiquitous in nature and essential for various industrial applications, which are crucial for their performance. Despite their significance, these processes are not well understood due to the lack of methods that can provide insight at the nanolevel into the very first stages of phase transitions. Taking advantage of synchrotron grazing-incidence wide-angle X-ray scattering (GIWAXS) and environmental scanning electron microscopy (ESEM), two pathways of the frosting process from supersaturated vapors were studied in real time for substrates with different wettabilities ranging from highly hydrophilic to superhydrophobic. Within GIWAXS, a fully quantitative structural and orientational characterization of the undergoing phase transition reveals the information on degree of crystallinity of the new phase and determines the ordering at the surfaces and inside the films at the initial stages of water/ice nucleation from vapor onto the substrates. The diversity of frosting scenarios, including direct desublimation from the vapor and two-stage condensation-freezing processes, was observed by both GIWAXS and ESEM for different combinations of substrate wettability and vapor supersaturations. The classical nucleation theory straightforwardly predicts the pathway of the phase transition for hydrophobic and superhydrophobic substrates. The case of hydrophilic substrates is more intricate because the barriers in Gibbs free energy for nucleating both liquid and solid embryos are close to each other and comparable to thermal energy kBT. At that end, classical nucleation theory allows concluding a relation between contact angles for ice and water embryos on the basis of the observed frosting pathway.

3.
Sci Rep ; 8(1): 3038, 2018 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-29445207

RESUMEN

Traction Force Microscopy (TFM) computes the forces exerted at the surface of an elastic material by measuring induced deformations in volume. It is used to determine the pattern of the adhesion forces exerted by cells or by cellular assemblies grown onto a soft deformable substrate. Typically, colloidal particles are dispersed in the substrate and their displacement is monitored by fluorescent microscopy. As with any other fluorescent techniques, the accuracy in measuring a particule's position is ultimately limited by the number of evaluated fluorescent photons. Here, we present a TFM technique based on the detection of probe particle displacements by holographic tracking microscopy. We show that nanometer scale resolutions of the particle displacements can be obtained and determine the maximum volume fraction of markers in the substrate. We demonstrate the feasibility of the technique experimentally and measure the three-dimensional force fields exerted by colorectal cancer cells cultivated onto a polyacrylamide gel substrate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA