Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(47): e2306351, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37708374

RESUMEN

In silicon heterojunction solar cell technology, thin layers of hydrogenated amorphous silicon (a-Si:H) are applied as passivating contacts to the crystalline silicon (c-Si) wafer. Thus, the properties of the a-Si:H is crucial for the performance of the solar cells. One important property of a-Si:H is its microstructure which can be characterized by the microstructure parameter R based on Si─H bond stretching vibrations. A common method to determine R is Fourier transform infrared (FTIR) absorption measurement which, however, is difficult to perform on solar cells for various reasons like the use of textured Si wafers and the presence of conducting oxide contact layers. Here, it is demonstrated that Raman spectroscopy is suitable to determine the microstructure of bulk a-Si:H layers of 10 nm or less on textured c-Si underneath indium tin oxide as conducting oxide. A detailed comparison of FTIR and Raman spectra is performed and significant differences in the microstructure parameter are obtained by both methods with decreasing a-Si:H film thickness.

2.
ACS Appl Electron Mater ; 3(10): 4337-4347, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34723186

RESUMEN

Phosphorus oxide (PO x ) capped by aluminum oxide (Al2O3) has recently been discovered to provide excellent surface passivation of crystalline silicon (c-Si). In this work, insights into the passivation mechanism of PO x /Al2O3 stacks are gained through a systematic study of the influence of deposition temperature (T dep = 100-300 °C) and annealing temperature (T ann = 200-500 °C) on the material and interface properties. It is found that employing lower deposition temperatures enables an improved passivation quality after annealing. Bulk composition, density, and optical properties vary only slightly with deposition temperature, but bonding configurations are found to be sensitive to temperature and correlated with the interface defect density (D it), which is reduced at lower deposition temperature. The fixed charge density (Q f) is in the range of + (3-9) × 1012 cm-2 and is not significantly altered by annealing, which indicates that the positively charged entities are generated during deposition. In contrast, D it decreases by 3 orders of magnitude (∼1013 to ∼1010 eV-1 cm-2) upon annealing. This excellent chemical passivation is found to be related to surface passivation provided by hydrogen, and mixing of aluminum into the PO x layer, leading to the formation of AlPO4 upon annealing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA