Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 4707, 2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34349110

RESUMEN

Salmonella utilizes translocated virulence proteins (termed effectors) to promote host cell invasion. The effector SopD contributes to invasion by promoting scission of the plasma membrane, generating Salmonella-containing vacuoles. SopD is expressed in all Salmonella lineages and plays important roles in animal models of infection, but its host cell targets are unknown. Here we show that SopD can bind to and inhibit the small GTPase Rab10, through a C-terminal GTPase activating protein (GAP) domain. During infection, Rab10 and its effectors MICAL-L1 and EHBP1 are recruited to invasion sites. By inhibiting Rab10, SopD promotes removal of Rab10 and recruitment of Dynamin-2 to drive scission of the plasma membrane. Together, our study uncovers an important role for Rab10 in regulating plasma membrane scission and identifies the mechanism used by a bacterial pathogen to manipulate this function during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas Bacterianas/genética , Dinamina II , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Células HEK293 , Humanos , Salmonella typhimurium/metabolismo , Vacuolas/metabolismo , Vacuolas/microbiología , Virulencia , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(25): 14433-14443, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32513747

RESUMEN

During infection, the bacterial pathogen Legionella pneumophila manipulates a variety of host cell signaling pathways, including the Hippo pathway which controls cell proliferation and differentiation in eukaryotes. Our previous studies revealed that L. pneumophila encodes the effector kinase LegK7 which phosphorylates MOB1A, a highly conserved scaffold protein of the Hippo pathway. Here, we show that MOB1A, in addition to being a substrate of LegK7, also functions as an allosteric activator of its kinase activity. A crystallographic analysis of the LegK7-MOB1A complex revealed that the N-terminal half of LegK7 is structurally similar to eukaryotic protein kinases, and that MOB1A directly binds to the LegK7 kinase domain. Substitution of interface residues critical for complex formation abrogated allosteric activation of LegK7 both in vitro and within cells and diminished MOB1A phosphorylation. Importantly, the N-terminal extension (NTE) of MOB1A not only regulated complex formation with LegK7 but also served as a docking site for downstream substrates such as the transcriptional coregulator YAP1. Deletion of the NTE from MOB1A or addition of NTE peptides as binding competitors attenuated YAP1 recruitment to and phosphorylation by LegK7. By providing mechanistic insight into the formation and regulation of the LegK7-MOB1A complex, our study unravels a sophisticated molecular mimicry strategy that is used by L. pneumophila to take control of the host cell Hippo pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Legionella pneumophila/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Regulación Alostérica , Animales , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/microbiología , Enfermedad de los Legionarios/patología , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Ratones , Simulación de Dinámica Molecular , Imitación Molecular , Fosforilación , Unión Proteica , Proteínas Quinasas/genética , Células RAW 264.7 , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
3.
J Biol Chem ; 293(34): 13044-13058, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-29976756

RESUMEN

Legionella pneumophila is a Gram-negative pathogenic bacterium that causes severe pneumonia in humans. It establishes a replicative niche called Legionella-containing vacuole (LCV) that allows bacteria to survive and replicate inside pulmonary macrophages. To hijack host cell defense systems, L. pneumophila injects over 300 effector proteins into the host cell cytosol. The Lem4 effector (lpg1101) consists of two domains: an N-terminal haloacid dehalogenase (HAD) domain with unknown function and a C-terminal phosphatidylinositol 4-phosphate-binding domain that anchors Lem4 to the membrane of early LCVs. Herein, we demonstrate that the HAD domain (Lem4-N) is structurally similar to mouse MDP-1 phosphatase and displays phosphotyrosine phosphatase activity. Substrate specificity of Lem4 was probed using a tyrosine phosphatase substrate set, which contained a selection of 360 phosphopeptides derived from human phosphorylation sites. This assay allowed us to identify a consensus pTyr-containing motif. Based on the localization of Lem4 to lysosomes and to some extent to plasma membrane when expressed in human cells, we hypothesize that this protein is involved in protein-protein interactions with an LCV or plasma membrane-associated tyrosine-phosphorylated host target.


Asunto(s)
Membrana Celular/metabolismo , Legionella pneumophila/enzimología , Lisosomas/metabolismo , Fosfoproteínas Fosfatasas/química , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Humanos , Legionella pneumophila/genética , Ratones , Conformación Proteica , Transporte de Proteínas , Homología de Secuencia
4.
PLoS Pathog ; 13(6): e1006394, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28570695

RESUMEN

Intracellular pathogenic bacteria evade the immune response by replicating within host cells. Legionella pneumophila, the causative agent of Legionnaires' Disease, makes use of numerous effector proteins to construct a niche supportive of its replication within phagocytic cells. The L. pneumophila effector SidK was identified in a screen for proteins that reduce the activity of the proton pumping vacuolar-type ATPases (V-ATPases) when expressed in the yeast Saccharomyces cerevisae. SidK is secreted by L. pneumophila in the early stages of infection and by binding to and inhibiting the V-ATPase, SidK reduces phagosomal acidification and promotes survival of the bacterium inside macrophages. We determined crystal structures of the N-terminal region of SidK at 2.3 Å resolution and used single particle electron cryomicroscopy (cryo-EM) to determine structures of V-ATPase:SidK complexes at ~6.8 Å resolution. SidK is a flexible and elongated protein composed of an α-helical region that interacts with subunit A of the V-ATPase and a second region of unknown function that is flexibly-tethered to the first. SidK binds V-ATPase strongly by interacting via two α-helical bundles at its N terminus with subunit A. In vitro activity assays show that SidK does not inhibit the V-ATPase completely, but reduces its activity by ~40%, consistent with the partial V-ATPase deficiency phenotype its expression causes in yeast. The cryo-EM analysis shows that SidK reduces the flexibility of the A-subunit that is in the 'open' conformation. Fluorescence experiments indicate that SidK binding decreases the affinity of V-ATPase for a fluorescent analogue of ATP. Together, these results reveal the structural basis for the fine-tuning of V-ATPase activity by SidK.


Asunto(s)
Proteínas Bacterianas/metabolismo , Legionella pneumophila/metabolismo , Enfermedad de los Legionarios/microbiología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Enzimológica de la Expresión Génica , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Enfermedad de los Legionarios/enzimología , Enfermedad de los Legionarios/genética , Conformación Proteica , ATPasas de Translocación de Protón Vacuolares/química , ATPasas de Translocación de Protón Vacuolares/genética
5.
J Biol Chem ; 291(30): 15767-77, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27226543

RESUMEN

Legionella pneumophila is a causative agent of a severe pneumonia, known as Legionnaires' disease. Legionella pathogenicity is mediated by specific virulence factors, called bacterial effectors, which are injected into the invaded host cell by the bacterial type IV secretion system. Bacterial effectors are involved in complex interactions with the components of the host cell immune and signaling pathways, which eventually lead to bacterial survival and replication inside the mammalian cell. Structural and functional studies of bacterial effectors are, therefore, crucial for elucidating the mechanisms of Legionella virulence. Here we describe the crystal structure of the LpiR1 (Lpg0634) effector protein and investigate the effects of its overexpression in mammalian cells. LpiR1 is an α-helical protein that consists of two similar domains aligned in an antiparallel fashion. The hydrophilic cleft between the domains might serve as a binding site for a potential host cell interaction partner. LpiR1 binds the phosphate group at a conserved site and is stabilized by Mn(2+), Ca(2+), or Mg(2+) ions. When overexpressed in mammalian cells, a GFP-LpiR1 fusion protein is localized in the cytoplasm. Intracellular signaling antibody array analysis revealed small changes in the phosphorylation state of several components of the Akt signaling pathway in HEK293T cells overexpressing LpiR1.


Asunto(s)
Sistemas de Secreción Bacterianos , Legionella pneumophila , Enfermedad de los Legionarios , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factores de Virulencia , Sistemas de Secreción Bacterianos/química , Sistemas de Secreción Bacterianos/genética , Sistemas de Secreción Bacterianos/metabolismo , Células HEK293 , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/patogenicidad , Enfermedad de los Legionarios/genética , Enfermedad de los Legionarios/metabolismo , Metales/química , Metales/metabolismo , Dominios Proteicos , Relación Estructura-Actividad , Factores de Virulencia/química , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
6.
Protein Sci ; 24(5): 604-20, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25565677

RESUMEN

Invading pathogens manipulate cellular process of the host cell to establish a safe replicative niche. To this end they secrete a spectrum of proteins called effectors that modify cellular environment through a variety of mechanisms. One of the most important mechanisms is the manipulation of cellular signaling through modifications of the cellular phosphoproteome. Phosphorylation/dephosphorylation plays a pivotal role in eukaryotic cell signaling, with ∼ 500 different kinases and ∼ 130 phosphatases in the human genome. Pathogens affect the phosphoproteome either directly through the action of bacterial effectors, and/or indirectly through downstream effects of host proteins modified by the effectors. Here we review the current knowledge of the structure, catalytic mechanism and function of bacterial effectors that modify directly the phosphorylation state of host proteins. These effectors belong to four enzyme classes: kinases, phosphatases, phospholyases and serine/threonine acetylases.


Asunto(s)
Bacterias Gramnegativas/enzimología , Monoéster Fosfórico Hidrolasas/química , Fosfotransferasas/química , Proteoma/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/patogenicidad , Interacciones Huésped-Patógeno/genética , Humanos , Monoéster Fosfórico Hidrolasas/genética , Fosforilación/genética , Fosfotransferasas/genética , Proteoma/genética
7.
Biochimie ; 94(6): 1368-75, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22440655

RESUMEN

Tumstatin, a cleavage fragment of collagen IV, is a potent endogenous inhibitor of angiogenesis. Tumstatin-derived peptide T8 possesses all angiostatic properties of full-length tumstatin and indirectly suppresses tumor growth. The potential of T8 to block pathological angiogenesis in the eye has not been explored yet. Here we assess antiangiogenic effects of a recombinant T8 peptide in rabbit corneal neovascularization models. The fusion protein consisting of T8 and thioredoxin was synthesized in a highly efficient Escherichia coli expression system, isolated using ion-exchange chromatography and cleaved with TEV (tobacco etch virus) protease. The target peptide was purified on an anion-exchange resin and by reversed phase high-performance liquid chromatography. The recombinant peptide suppressed the proliferation of basic fibroblast growth factor-induced SVEC-4-10 endothelial cells (simian virus 40-immortalized murine endothelial cells) and inhibited tube formation in these cells in a dose-dependent manner. In rabbit corneal neovascularization models T8 demonstrated the ability to prevent pathological angiogenesis (when injected simultaneously with the induction of neovascularization) and, moreover, to promote the regression of newly-formed blood vessels (when injected on day 8 after angiogenesis stimulation). Our results suggest that T8 may have a therapeutic potential in the treatment of ocular neovascular diseases.


Asunto(s)
Autoantígenos/uso terapéutico , Colágeno Tipo IV/uso terapéutico , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fragmentos de Péptidos/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Animales , Autoantígenos/química , Colágeno Tipo IV/química , Células Endoteliales/efectos de los fármacos , Ratones , Conejos
8.
Biotechnol Appl Biochem ; 56(1): 17-25, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-20408810

RESUMEN

Human thymosin alpha1 is an effective immune system enhancer for the treatment of cancer and viral diseases. Therefore the development of new methods for its synthesis is an urgent problem. In the present work, we propose an efficient scalable scheme for the production of recombinant thymosin alpha1. We used an expression system based on the pET32b+ plasmid and Escherichia coli strain ER2566 to obtain a fusion protein consisting of thymosin alpha1 and thioredoxin separated by a TEV (tobacco etch virus) protease cleavage site. The fusion protein was overexpressed in soluble form and purified by ion-exchange chromatography. After proteolytic cleavage of the fusion protein with TEV protease, recombinant desacetylthymosin alpha1 was isolated by ultrafiltration. Acetic anhydride was used for selective N-terminal acetylation of the obtained peptide (yield=62%). The resultant thymosin alpha1 was purified by RP-HPLC (reversed-phase HPLC). The distinctive feature of this technology is that it is a combination of different approaches: the biotechnological production of recombinant fusion protein, its enzymatic cleavage, and chemical acetylation of desacetylthymosin alpha1. Each stage of the process was optimized to increase the yield of the target peptide, which averaged 29 mg/litre of bacterial culture. The proposed method is simple and cost-effective and is suitable for large-scale production of recombinant thymosin alpha1.


Asunto(s)
Biotecnología/métodos , Endopeptidasas/genética , Escherichia coli/genética , Tiorredoxinas/genética , Timosina/análogos & derivados , Acetilación , Endopeptidasas/aislamiento & purificación , Endopeptidasas/metabolismo , Expresión Génica , Humanos , Plásmidos/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Tiorredoxinas/aislamiento & purificación , Tiorredoxinas/metabolismo , Timalfasina , Timosina/química , Timosina/genética , Timosina/aislamiento & purificación , Timosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA