Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 25(1): 21-30, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177903

RESUMEN

Mechano-immunity, the intersection between cellular or tissue mechanics and immune cell function, is emerging as an important factor in many inflammatory diseases. Mechano-sensing defines how cells detect mechanical changes in their environment. Mechano-response defines how cells adapt to such changes, e.g. form synapses, signal or migrate. Inflammasomes are intracellular immune sensors that detect changes in tissue and cell homoeostasis during infection or injury. We and others recently found that mechano-sensing of tissue topology (swollen tissue), topography (presence and distribution of foreign solid implant) or biomechanics (stiffness), alters inflammasome activity. Once activated, inflammasomes induce the secretion of inflammatory cytokines, but also change cellular mechanical properties, which influence how cells move, change their shape, and interact with other cells. When overactive, inflammasomes lead to chronic inflammation. This clearly places inflammasomes as important players in mechano-immunity. Here, we discuss a model whereby inflammasomes integrate pathogen- and tissue-injury signals, with changes in tissue mechanics, to shape the downstream inflammatory responses and allow cell and tissue mechano-adaptation. We will review the emerging evidence that supports this model.


Asunto(s)
Citocinas , Inflamasomas , Humanos , Inflamación
2.
Cell Rep Med ; 4(11): 101245, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37913775

RESUMEN

Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Liposomas , Células TH1 , Emulsiones , Adyuvantes Inmunológicos/farmacología , Malaria/prevención & control
3.
EMBO J ; 42(7): e111450, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36861806

RESUMEN

Membrane ion channels of the calcium homeostasis modulator (CALHM) family promote cell-cell crosstalk at neuronal synapses via ATP release, where ATP acts as a neurotransmitter. CALHM6, the only CALHM highly expressed in immune cells, has been linked to the induction of natural killer (NK) cell anti-tumour activity. However, its mechanism of action and broader functions in the immune system remain unclear. Here, we generated Calhm6-/- mice and report that CALHM6 is important for the regulation of the early innate control of Listeria monocytogenes infection in vivo. We find that CALHM6 is upregulated in macrophages by pathogen-derived signals and that it relocates from the intracellular compartment to the macrophage-NK cell synapse, facilitating ATP release and controlling the kinetics of NK cell activation. Anti-inflammatory cytokines terminate CALHM6 expression. CALHM6 forms an ion channel when expressed in the plasma membrane of Xenopus oocytes, where channel opening is controlled by a conserved acidic residue, E119. In mammalian cells, CALHM6 is localised to intracellular compartments. Our results contribute to the understanding of neurotransmitter-like signal exchange between immune cells that fine-tunes the timing of innate immune responses.


Asunto(s)
Infecciones Bacterianas , Sinapsis Inmunológicas , Ratones , Animales , Canales Iónicos/metabolismo , Células Asesinas Naturales , Infecciones Bacterianas/metabolismo , Adenosina Trifosfato/metabolismo , Mamíferos
4.
Cells ; 11(8)2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35455985

RESUMEN

About thirty years ago, a new form of pro-inflammatory lytic cell death was observed and termed pyroptosis. Only in 2015, gasdermins were defined as molecules that create pores at the plasma membrane and drive pyroptosis. Today, we know that gasdermin-mediated death is an important antimicrobial defence mechanism in bacteria, yeast and mammals as it destroys the intracellular niche for pathogen replication. However, excessive and uncontrolled cell death also contributes to immunopathology in several chronic inflammatory diseases, including arthritis. In this review, we discuss recent findings where pyroptosis contributes to tissue damage and inflammation with a main focus on injury-induced and autoimmune arthritis. We also review novel functions and regulatory mechanisms of the pyroptotic executors gasdermins. Finally, we discuss possible models of how pyroptosis may contribute to the cross-talk between fibroblast and macrophages, and also how this cross-talk may regulate inflammation by modulating inflammasome activation and pyroptosis induction.


Asunto(s)
Artritis Reumatoide , Piroptosis , Animales , Fibroblastos/metabolismo , Inflamación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Mamíferos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Piroptosis/fisiología
5.
Methods Mol Biol ; 2459: 51-63, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35212953

RESUMEN

The non-canonical inflammasome is a signaling platform that allows for the detection of cytoplasmic lipopolysaccharides (LPS) in immune and non-immune cells. Upon detection of LPS, this inflammasome activates the signaling proteases caspase-4 and -5 (in humans) and caspase-11 (in mice). Inflammatory caspases activation leads to caspase self-processing and the cleavage of the pore-forming protein Gasdermin D (GSDMD). GSDMD N-terminal fragments oligomerize and form pores at the plasma membranes, leading to an inflammatory form of cell death called pyroptosis. Here, we describe a simple method to activate the non-canonical inflammasome in myeloid and epithelial cells and to measure its activity using cell death assay and immunoblotting.


Asunto(s)
Inflamasomas , Péptidos y Proteínas de Señalización Intracelular , Animales , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Fosfato , Piroptosis
6.
J Exp Med ; 219(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34910106

RESUMEN

The germinal center (GC) is a site where somatic hypermutation and clonal selection are coupled for antibody affinity maturation against infections. However, how GCs are formed and regulated is incompletely understood. Here, we identified an unexpected role of Tank-binding kinase-1 (TBK1) as a crucial B cell-intrinsic factor for GC formation. Using immunization and malaria infection models, we show that TBK1-deficient B cells failed to form GC despite normal Tfh cell differentiation, although some malaria-infected B cell-specific TBK1-deficient mice could survive by GC-independent mechanisms. Mechanistically, TBK1 phosphorylation elevates in B cells during GC differentiation and regulates the balance of IRF4/BCL6 expression by limiting CD40 and BCR activation through noncanonical NF-κB and AKTT308 signaling. In the absence of TBK1, CD40 and BCR signaling synergistically enhanced IRF4 expression in Pre-GC, leading to BCL6 suppression, and therefore failed to form GCs. As a result, memory B cells generated from TBK1-deficient B cells fail to confer sterile immunity upon reinfection, suggesting that TBK1 determines B cell fate to promote long-lasting humoral immunity.


Asunto(s)
Linfocitos B/inmunología , Linfocitos B/metabolismo , Centro Germinal/inmunología , Centro Germinal/metabolismo , Interacciones Huésped-Patógeno , Infecciones/etiología , Proteínas Serina-Treonina Quinasas/genética , Animales , Biomarcadores , Antígenos CD40/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Inmunización , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo
7.
Biochem Soc Trans ; 49(6): 2495-2507, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34854899

RESUMEN

Inflammasomes are protein complexes in the innate immune system that regulate the production of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activation and subsequent cell death often occur within minutes to an hour, so the pathway must be dynamically controlled to prevent excessive inflammation and the development of inflammatory diseases. Phosphorylation is a fundamental post-translational modification that allows rapid control over protein function and the phosphorylation of inflammasome proteins has emerged as a key regulatory step in inflammasome activation. Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and intra-molecular interactions, subcellular localisation, and function. The control of inflammasome phosphorylation may thus provide a new strategy for the development of anti-inflammatory therapeutics. Herein we describe the current knowledge of how phosphorylation operates as a critical switch for inflammasome signalling.


Asunto(s)
Inflamasomas/metabolismo , Transducción de Señal , Animales , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Fracciones Subcelulares/metabolismo
8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34518217

RESUMEN

NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications. Here, we describe a posttranslational phospho-switch that licenses NLRP3 activation in macrophages. The ON switch is controlled by the protein phosphatase 2A (PP2A) downstream of a variety of NLRP3 activators in vitro and in lipopolysaccharide-induced peritonitis in vivo. The OFF switch is regulated by two closely related kinases, TANK-binding kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε). Pharmacological inhibition of TBK1 and IKKε, as well as simultaneous deletion of TBK1 and IKKε, but not of either kinase alone, increases NLRP3 activation. In addition, TBK1/IKKε inhibitors counteract the effects of PP2A inhibition on inflammasome activity. We find that, mechanistically, TBK1 interacts with NLRP3 and controls the pathway activity at a site distinct from NLRP3-serine 3, previously reported to be under PP2A control. Mutagenesis of NLRP3 confirms serine 3 as an important phospho-switch site but, surprisingly, reveals that this is not the sole site regulated by either TBK1/IKKε or PP2A, because all retain the control over the NLRP3 pathway even when serine 3 is mutated. Altogether, a model emerges whereby TLR-activated TBK1 and IKKε act like a "parking brake" for NLRP3 activation at the time of priming, while PP2A helps remove this parking brake in the presence of NLRP3 activating signals, such as bacterial pore-forming toxins or endogenous danger signals.


Asunto(s)
Quinasa I-kappa B/genética , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/genética , Animales , Línea Celular , Femenino , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación/genética
9.
Front Immunol ; 12: 661162, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868312

RESUMEN

Pyroptosis is a proinflammatory form of cell death, mediated by membrane pore-forming proteins called gasdermins. Gasdermin pores allow the release of the pro-inflammatory cytokines IL-1ß and IL-18 and cause cell swelling and cell lysis leading to release of other intracellular proteins that act as alarmins to perpetuate inflammation. The best characterized, gasdermin D, forms pores via its N-terminal domain, generated after the cleavage of full length gasdermin D by caspase-1 or -11 (caspase-4/5 in humans) typically upon sensing of intracellular pathogens. Thus, gasdermins were originally thought to largely contribute to pathogen-induced inflammation. We now know that gasdermin family members can also be cleaved by other proteases, such as caspase-3, caspase-8 and granzymes, and that they contribute to sterile inflammation as well as inflammation in autoinflammatory diseases or during cancer immunotherapy. Here we briefly review how and when gasdermin pores are formed, and then focus on emerging endogenous mechanisms and therapeutic approaches that could be used to control pore formation, pyroptosis and downstream inflammation.


Asunto(s)
Inflamación/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptido Hidrolasas/metabolismo , Piroptosis/genética , Animales , Muerte Celular , Humanos , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/clasificación , Ratones , Péptido Hidrolasas/clasificación , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo
10.
Vaccines (Basel) ; 8(3)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971761

RESUMEN

In modern vaccines, adjuvants can be sophisticated immunological tools to promote robust and long-lasting protection against prevalent diseases. However, there is an urgent need to improve immunogenicity of vaccines in order to protect mankind from life-threatening diseases such as AIDS, malaria or, most recently, COVID-19. Therefore, it is important to understand the cellular and molecular mechanisms of action of vaccine adjuvants, which generally trigger the innate immune system to enhance signal transition to adaptive immunity, resulting in pathogen-specific protection. Thus, improved understanding of vaccine adjuvant mechanisms may aid in the design of "intelligent" vaccines to provide robust protection from pathogens. Various commonly used clinical adjuvants, such as aluminium salts, saponins or emulsions, have been identified as activators of inflammasomes - multiprotein signalling platforms that drive activation of inflammatory caspases, resulting in secretion of pro-inflammatory cytokines of the IL-1 family. Importantly, these cytokines affect the cellular and humoral arms of adaptive immunity, which indicates that inflammasomes represent a valuable target of vaccine adjuvants. In this review, we highlight the impact of different inflammasomes on vaccine adjuvant-induced immune responses regarding their mechanisms and immunogenicity. In this context, we focus on clinically relevant adjuvants that have been shown to activate the NLRP3 inflammasome and also present various experimental adjuvants that activate the NLRP3-, NLRC4-, AIM2-, pyrin-, or non-canonical inflammasomes and could have the potential to improve future vaccines. Together, we provide a comprehensive overview on vaccine adjuvants that are known, or suggested, to promote immunogenicity through inflammasome-mediated signalling.

11.
Proc Natl Acad Sci U S A ; 117(29): 17156-17165, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32611812

RESUMEN

Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1-encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77tg) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg;Vα14tg) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions.


Asunto(s)
Diferenciación Celular , Tolerancia Inmunológica , Células T Asesinas Naturales , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Animales , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Células Cultivadas , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Ratones , Ratones Noqueados , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/inmunología , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Receptores de Antígenos de Linfocitos T , Timocitos
12.
J Cell Sci ; 133(13)2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32503942

RESUMEN

Complex inflammatory signalling cascades define the response to tissue injury but also control development and homeostasis, limiting the potential for these pathways to be targeted therapeutically. Primary cilia are subcellular regulators of cellular signalling, controlling how signalling is organized, encoded and, in some instances, driving or influencing pathogenesis. Our previous research revealed that disruption of ciliary intraflagellar transport (IFT), altered the cell response to IL-1ß, supporting a putative link emerging between cilia and inflammation. Here, we show that IFT88 depletion affects specific cytokine-regulated behaviours, changing cytosolic NFκB translocation dynamics but leaving MAPK signalling unaffected. RNA-seq analysis indicates that IFT88 regulates one third of the genome-wide targets, including the pro-inflammatory genes Nos2, Il6 and Tnf Through microscopy, we find altered NFκB dynamics are independent of assembly of a ciliary axoneme. Indeed, depletion of IFT88 inhibits inflammatory responses in the non-ciliated macrophage. We propose that ciliary proteins, including IFT88, KIF3A, TTBK2 and NPHP4, act outside of the ciliary axoneme to tune cytoplasmic NFκB signalling and specify the downstream cell response. This is thus a non-canonical function for ciliary proteins in shaping cellular inflammation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Cilios , Transducción de Señal , Cilios/metabolismo , Flagelos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Transporte de Proteínas
13.
Cell Rep ; 31(1): 107481, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32268100

RESUMEN

The cytokine interleukin-1ß (IL-1ß) is critical for antimicrobial defenses; the inflammasome pathway typically controls IL-1ß release, but pathogens often evade this pathway. In this issue, Donado et al. (2020) describe an alternative, two-cell model, to instruct inflammasome-independent IL-1ß release.


Asunto(s)
Inflamasomas , Células T Asesinas Naturales , Citocinas , Interleucina-1beta
14.
Cell Rep ; 24(6): 1425-1433, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30089254

RESUMEN

IL-1ß requires processing by caspase-1 to generate the active, pro-inflammatory cytokine. Acute IL-1ß secretion from inflammasome-activated macrophages requires caspase-1-dependent GSDMD cleavage, which also induces pyroptosis. Mechanisms of IL-1ß secretion by pyroptotic and non-pyroptotic cells, and the precise functions of caspase-1 and GSDMD therein, are unresolved. Here, we show that, while efficient early secretion of endogenous IL-1ß from primary non-pyroptotic myeloid cells in vitro requires GSDMD, later IL-1ß release in vitro and in vivo proceeds independently of GSDMD. IL-1ß maturation is sufficient for slow, caspase-1/GSDMD-independent secretion of ectopic IL-1ß from resting, non-pyroptotic macrophages, but the speed of IL-1ß release is boosted by inflammasome activation, via caspase-1 and GSDMD. IL-1ß cleavage induces IL-1ß enrichment at PIP2-enriched plasma membrane ruffles, and this is a prerequisite for IL-1ß secretion and is mediated by a polybasic motif within the cytokine. We thus reveal a mechanism in which maturation-induced IL-1ß trafficking facilitates its unconventional secretion.


Asunto(s)
Membrana Celular/metabolismo , Interleucina-1beta/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Humanos , Transfección
15.
J Immunol ; 200(10): 3341-3346, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29661823

RESUMEN

The mammalian inhibitor of apoptosis proteins (IAPs) are key regulators of cell death and inflammation. A major function of IAPs is to block the formation of a cell death-inducing complex, termed the ripoptosome, which can trigger caspase-8-dependent apoptosis or caspase-independent necroptosis. Recent studies report that upon TLR4 or TNF receptor 1 (TNFR1) signaling in macrophages, the ripoptosome can also induce NLRP3 inflammasome formation and IL-1ß maturation. Whether neutrophils have the capacity to assemble a ripoptosome to induce cell death and inflammasome activation during TLR4 and TNFR1 signaling is unclear. In this study, we demonstrate that murine neutrophils can signal via TNFR1-driven ripoptosome assembly to induce both cell death and IL-1ß maturation. However, unlike macrophages, neutrophils suppress TLR4-dependent cell death and NLRP3 inflammasome activation during IAP inhibition via deficiencies in the CD14/TRIF arm of TLR4 signaling.


Asunto(s)
Apoptosis/fisiología , Muerte Celular/fisiología , Proteínas Inhibidoras de la Apoptosis/metabolismo , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Factores de Necrosis Tumoral/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Necrosis/metabolismo , Neutrófilos/efectos de los fármacos , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal/fisiología , Receptor Toll-Like 4/metabolismo
16.
J Exp Med ; 215(3): 827-840, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29432122

RESUMEN

Host-protective caspase-1 activity must be tightly regulated to prevent pathology, but mechanisms controlling the duration of cellular caspase-1 activity are unknown. Caspase-1 is activated on inflammasomes, signaling platforms that facilitate caspase-1 dimerization and autoprocessing. Previous studies with recombinant protein identified a caspase-1 tetramer composed of two p20 and two p10 subunits (p20/p10) as an active species. In this study, we report that in the cell, the dominant species of active caspase-1 dimers elicited by inflammasomes are in fact full-length p46 and a transient species, p33/p10. Further p33/p10 autoprocessing occurs with kinetics specified by inflammasome size and cell type, and this releases p20/p10 from the inflammasome, whereupon the tetramer becomes unstable in cells and protease activity is terminated. The inflammasome-caspase-1 complex thus functions as a holoenzyme that directs the location of caspase-1 activity but also incorporates an intrinsic self-limiting mechanism that ensures timely caspase-1 deactivation. This intrinsic mechanism of inflammasome signal shutdown offers a molecular basis for the transient nature, and coordinated timing, of inflammasome-dependent inflammatory responses.


Asunto(s)
Caspasa 1/metabolismo , Inflamasomas/metabolismo , Animales , Cinética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Modelos Biológicos , Nigericina/farmacología , Multimerización de Proteína
17.
Sci Rep ; 7(1): 15594, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142275

RESUMEN

Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-xL-coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.


Asunto(s)
FN-kappa B/genética , Células T Asesinas Naturales/inmunología , Receptores de Antígenos de Linfocitos T/genética , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Animales , Apoptosis/genética , Diferenciación Celular/genética , Humanos , Activación de Linfocitos/genética , Linfocitos/inmunología , Ratones , Ratones Transgénicos , FN-kappa B/inmunología , Proteína Quinasa C-theta/genética , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Transducción de Señal/genética , Timocitos/efectos de los fármacos , Timocitos/metabolismo , Factor de Transcripción ReIA/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Proteína bcl-X/genética , Receptor fas/genética
18.
J Cell Biol ; 216(9): 2615-2618, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28811279

RESUMEN

Assembly of the ASC speck is critical for signaling by the inflammasome. In this issue, Kuri et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201703103) use live microscopy to track fluorescently tagged endogenous ASC in the zebrafish, describing the molecular domains driving ASC speck assembly and identifying a key role for macrophages in ASC speck removal in vivo.


Asunto(s)
Proteínas del Citoesqueleto , Pez Cebra , Animales , Inflamasomas , Macrófagos , Transducción de Señal
19.
Curr Protoc Immunol ; 117: 14.13.1-14.13.55, 2017 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-28369682

RESUMEN

Semi-invariant natural killer T (iNKT) cells are CD1d-restricted innate-like lymphocytes that recognize lipid agonists. Activated iNKT cells have immunoregulatory properties. Human and mouse iNKT cell functions elicited by different glycolipid agonists are highly conserved, making the mouse an excellent animal model for understanding iNKT cell biology in vivo. This unit describes basic methods for the characterization and quantification (see Basic Protocol 1) and functional analysis of mouse iNKT cells in vivo or in vitro. This unit also contains protocols that describe enrichment and purification of iNKT cells, generation of CD1d tetramer, and lipid antigen loading onto cell-bound and soluble CD1d for activation of NKT cell hybridomas. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Inmunofenotipificación/métodos , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Fenotipo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Antígenos de Superficie/metabolismo , Biomarcadores , Citometría de Flujo/métodos , Activación de Linfocitos/inmunología , Ratones , Células T Asesinas Naturales/efectos de los fármacos , Subgrupos de Linfocitos T/efectos de los fármacos
20.
Cell Mol Immunol ; 14(1): 118-126, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26996064

RESUMEN

Inflammation is the host response to microbial infection or sterile injury that aims to eliminate the insult, repair the tissue and restore homeostasis. Macrophages and the NLRP3 inflammasome are key sentinels for both types of insult. Although it is well established that the NLRP3 inflammasome is activated by microbial products and molecules released during sterile injury, it is unclear whether the responses elicited by these different types of signals are distinct. In this study, we used lipopolysaccharide and tumor necrosis factor as prototypical microbial and sterile signal 1 stimuli, respectively, to prime the NLRP3 inflammasome. We then used the bacterial toxin nigericin and a common product released from necrotic cells, ATP, as prototypical microbial and sterile signal 2 stimuli, respectively, to trigger the assembly of the NLRP3 inflammasome complex in mouse and human macrophages. We found that NLRP3 inflammasome responses were weakest when both signal 1 and signal 2 were sterile, but responses were faster and stronger when at least one of the two signals was microbial. Ultimately, the most rapid and potent responses were elicited when both signals were microbial. Together, these data suggest that microbial versus sterile signals are distinct, both kinetically and in magnitude, in their ability to generate inflammasome-dependent responses. This hierarchy of NLRP3 responses to sterile versus microbial stimuli likely reflects the urgent need for the immune system to respond rapidly to the presence of infection to halt pathogen dissemination.


Asunto(s)
Inflamasomas/metabolismo , Macrófagos/microbiología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Animales , Reactividad Cruzada/efectos de los fármacos , Reactividad Cruzada/inmunología , Humanos , Interleucina-1beta/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...