Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 29(5): 165, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37117952

RESUMEN

Chagas disease (CD) is a tropical disease caused by the parasite Trypanosoma cruzi, transmitted by the barber insect. Currently, there are approximately 7 million infected people in the world, and it is estimated that 70 million people could contract this disease. The anacardic acid (AA) showed effectiveness in in silico and in vitro tests. The antichagasic potential of five sulfonamide molecules, derived from anacardic acid, was evaluated from a molecular approach based on the density functional theory (DFT), molecular dynamics (MD), and molecular docking (docking) calculations. Methyl 2-methoxy-6- (8- (methylsulfonamide) octyl) benzoate (SA1); 2-methoxy-6- (8- (phenylsulfonamide) octyl) benzoate (SA2); methyl 2-methoxy-6- (8- (2methylphenyl sulfonamide) octyl) benzoate (SA3); methyl 2-methoxy-6- (8-(methylphenylsulfonamide)octyl)benzoate (SA4); methyl2-(8-(2,5-dimethylphenylsulfonamide)octyl)-6-methoxybenzoate (SA5) were the investigated molecules. The DFT calculations were performed using the B3LYP/6-311+G (d, p) level of theory. The global and local reactivity data showed that SA1 shows the highest molecular reactivity, while SA2 is the most stable derivative. In addition, the structures of investigated molecules were confirmed by the linear correlations higher than 0.98 displayed between the experimental and calculated spectroscopic data (IR and NMR). Molecular docking of the molecules showed a greater prominence for the SA1, SA2, and SA4 molecules in the results of distances of ligand-cruzain. In molecular dynamics, SA2 obtained better stability due to greater interactions with important amino acids of cruzain.


Asunto(s)
Ácidos Anacárdicos , Simulación de Dinámica Molecular , Humanos , Simulación del Acoplamiento Molecular , Teoría Funcional de la Densidad , Ácidos Anacárdicos/farmacología , Espectroscopía de Resonancia Magnética , Sulfonamidas
2.
J Biomol Struct Dyn ; 41(16): 7677-7685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36120963

RESUMEN

This research aimed to conduct an in silico study of compounds, mainly flavonoids, that are found in several plants, including the species of the Chamaecrista genus. The ADME properties, the drug-likeness score and properties of Lipinski and Veber rules of the molecules were determined using online databases. Based on the predicted properties, four flavonoids, apigenin, fisetin, luteolin and ononin were selected for molecular docking and dynamic simulations to study their interactions with DNA (PDB ID: 1BNA). The molecular docking showed that ononin has a high affinity for B-DNA, exhibiting a ΔG value of -9.3 kcal mol-1, compared with the other flavonoids. The molecular dynamic simulations of the flavonoid-DNA complexes showed that the flavonoids interacted with DNA by hydrogen bonding, hydrophobic interaction and π-stacking. The flavonoid ononin showed the best interaction energy value of -291.3490 kJ mol-1, compared with the other flavonoids.Communicated by Ramaswamy H. Sarma.

3.
J Mol Model ; 26(12): 339, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33179132

RESUMEN

The water influence on electrochemical behaviour of Ag+ ions in urea and choline chloride mixture was investigated by cyclic voltammetry technique, while the molecular insights about the investigated systems were obtained from molecular dynamic (MD) simulation. The water content was variated from 0 up to 10% (v/v). Cyclic voltammetry technique showed that the peak potential for Ag+/Ag redox couples shifted in direction to more positive potentials with the gradual increase of water content in solution, indicating that the addition of water electrocatalyses the kinetics of the reduction of Ag+ ions. The MD simulations demonstrated that water molecules do not interact strongly with Ag+ ions but induce a small reduction in the number of urea molecules around of the ion and that the water molecules adjust to free spaces in the mixture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...