Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
AJNR Am J Neuroradiol ; 37(12): 2217-2223, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27585700

RESUMEN

BACKGROUND AND PURPOSE: Tumor CBV is a prognostic and predictive marker for patients with gliomas. Tumor CBV can be measured noninvasively with different MR imaging techniques; however, it is not clear which of these techniques most closely reflects histologically-measured tumor CBV. Our aim was to investigate the correlations between dynamic contrast-enhanced and DSC-MR imaging parameters and immunohistochemistry in patients with gliomas. MATERIALS AND METHODS: Forty-three patients with a new diagnosis of glioma underwent a preoperative MR imaging examination with dynamic contrast-enhanced and DSC sequences. Unnormalized and normalized cerebral blood volume was obtained from DSC MR imaging. Two sets of plasma volume and volume transfer constant maps were obtained from dynamic contrast-enhanced MR imaging. Plasma volume obtained from the phase-derived vascular input function and bookend T1 mapping (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function and bookend T1 mapping (Ktrans_Φ) were determined. Plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (Ktrans_SI) were acquired, without T1 mapping. Using CD34 staining, we measured microvessel density and microvessel area within 3 representative areas of the resected tumor specimen. The Mann-Whitney U test was used to test for differences according to grade and degree of enhancement. The Spearman correlation was performed to determine the relationship between dynamic contrast-enhanced and DSC parameters and histopathologic measurements. RESULTS: Microvessel area, microvessel density, dynamic contrast-enhanced, and DSC-MR imaging parameters varied according to the grade and degree of enhancement (P < .05). A strong correlation was found between microvessel area and Vp_Φ and between microvessel area and unnormalized blood volume (rs ≥ 0.61). A moderate correlation was found between microvessel area and normalized blood volume, microvessel area and Vp_SI, microvessel area and Ktrans_Φ, microvessel area and Ktrans_SI, microvessel density and Vp_Φ, microvessel density and unnormalized blood volume, and microvessel density and normalized blood volume (0.44 ≤ rs ≤ 0.57). A weaker correlation was found between microvessel density and Ktrans_Φ and between microvessel density and Ktrans_SI (rs ≤ 0.41). CONCLUSIONS: With dynamic contrast-enhanced MR imaging, use of a phase-derived vascular input function and bookend T1 mapping improves the correlation between immunohistochemistry and plasma volume, but not between immunohistochemistry and the volume transfer constant. With DSC-MR imaging, normalization of tumor CBV could decrease the correlation with microvessel area.


Asunto(s)
Neoplasias Encefálicas/irrigación sanguínea , Glioma/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Adulto , Algoritmos , Volumen Sanguíneo , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/fisiopatología , Medios de Contraste , Femenino , Glioma/diagnóstico por imagen , Glioma/fisiopatología , Humanos , Inmunohistoquímica , Masculino , Microvasos/diagnóstico por imagen , Microvasos/patología , Persona de Mediana Edad , Pronóstico , Estadísticas no Paramétricas
2.
AJNR Am J Neuroradiol ; 36(11): 2017-22, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26228886

RESUMEN

BACKGROUND AND PURPOSE: Dynamic contrast-enhanced MR imaging parameters can be biased by poor measurement of the vascular input function. We have compared the diagnostic accuracy of dynamic contrast-enhanced MR imaging by using a phase-derived vascular input function and "bookend" T1 measurements with DSC MR imaging for preoperative grading of astrocytomas. MATERIALS AND METHODS: This prospective study included 48 patients with a new pathologic diagnosis of an astrocytoma. Preoperative MR imaging was performed at 3T, which included 2 injections of 5-mL gadobutrol for dynamic contrast-enhanced and DSC MR imaging. During dynamic contrast-enhanced MR imaging, both magnitude and phase images were acquired to estimate plasma volume obtained from phase-derived vascular input function (Vp_Φ) and volume transfer constant obtained from phase-derived vascular input function (K(trans)_Φ) as well as plasma volume obtained from magnitude-derived vascular input function (Vp_SI) and volume transfer constant obtained from magnitude-derived vascular input function (K(trans)_SI). From DSC MR imaging, corrected relative CBV was computed. Four ROIs were placed over the solid part of the tumor, and the highest value among the ROIs was recorded. A Mann-Whitney U test was used to test for difference between grades. Diagnostic accuracy was assessed by using receiver operating characteristic analysis. RESULTS: Vp_ Φ and K(trans)_Φ values were lower for grade II compared with grade III astrocytomas (P < .05). Vp_SI and K(trans)_SI were not significantly different between grade II and grade III astrocytomas (P = .08-0.15). Relative CBV and dynamic contrast-enhanced MR imaging parameters except for K(trans)_SI were lower for grade III compared with grade IV (P ≤ .05). In differentiating low- and high-grade astrocytomas, we found no statistically significant difference in diagnostic accuracy between relative CBV and dynamic contrast-enhanced MR imaging parameters. CONCLUSIONS: In the preoperative grading of astrocytomas, the diagnostic accuracy of dynamic contrast-enhanced MR imaging parameters is similar to that of relative CBV.


Asunto(s)
Astrocitoma/patología , Neoplasias Encefálicas/patología , Imagen por Resonancia Magnética/métodos , Clasificación del Tumor/métodos , Cuidados Preoperatorios/métodos , Adulto , Anciano , Algoritmos , Medios de Contraste , Femenino , Humanos , Masculino , Persona de Mediana Edad , Compuestos Organometálicos , Estudios Prospectivos , Curva ROC , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...