Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 61(34): 10229, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36606786

RESUMEN

This publisher's note serves to correct Appl. Opt.56, 9315 (2017)APOPAI0003-693510.1364/AO.56.009315.

2.
Appl Opt ; 59(28): 9015-9022, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33104591

RESUMEN

We demonstrate the controllable generation of infrared dispersive waves (DWs) from customized, in-house fabricated silica microstructured optical fibers (MOFs) by manipulating the location of zero dispersion wavelength (ZDW) through the structure of the fibers. The highly enriched shaping mechanism of arrested soliton in the MOFs with two ZDWs provides a technique for efficient energy transfer into the targeted eye-safe wavelengths at 1.7 and 2.0 µm by the virtue of DW formation.

3.
Appl Opt ; 56(33): 9315-9324, 2017 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-29216107

RESUMEN

We report the fabrication, characterization, and application (broadband supercontinuum [SC] generation) of ultra-high numerical-aperture heavily (50 mol. %) GeO2-doped optical fiber, obtained through a modified chemical vapor deposition process and rod-in-tube method. The formation of Ge-related diamagnetic defect centers, such as germanium oxygen defect centers (GeODC) with nonbridging lone electron pairs, confirmed by x-ray photoelectron spectroscopy and optical absorption studies, inducing hypolarizable local dipoles, may be responsible in boosting the nonlinear effects and enhancing stimulated Raman scattering at pumping with high-power pulses, culminating in generation of broadband SC generation. The SC spans toward the Stokes side up to 2.4 µm, under the action of ns-range pulses launched from a smartly Q-switched erbium-doped fiber laser with operation wavelength (1.56 µm) matching the zero-dispersion wavelength of the high GeO2-doped fiber.

4.
Opt Express ; 22(6): 7075-86, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664056

RESUMEN

This paper details the effect of Thulium and Bismuth concentration ratio on gain-shift at 1800 nm and 1400 nm band in a Thulium-Bismuth Doped Fiber Amplifier (TBDFA). The effect of Thulium and Bismuth's concentration ratio on gain shifting is experimentally established and subsequently numerically modeled. The analysis is carried out via the cross relaxation and energy transfer processes between the two dopants. The energy transfer in this process was studied through experimental and numerical analysis of three samples with different Tm/Bi concentration ratio of 2, 0.5 and 0.2, respectively. The optimized length for the three samples (TBDFA-1, TBDFA-2 and TBDFA-3) was determined and set at 6.5, 4 and 5.5 m, respectively. In addition, the experimental result of Thulium Doped Fiber Amplifier (TDFA) was compared with the earlier TBDFA samples. The gain for TBDFA-1, with the highest Tm/Bi ratio, showed no shift at the 1800 nm region, while TBDFA-2 and TBDFA-3, possessing a lower Tm/Bi concentration ratio, shifted to the region of 1950 and 1960 nm, respectively. The gain shifting from 1460 nm to 1490 nm is also observed. The numerical model demonstrates that the common 3F4 layer for 1460 nm emission (3H4→3F4), and 1800 nm emission (3F4→3H6)inversely affects the 1460 nm and 1800 nm gain shifting.

5.
Appl Opt ; 50(20): 3475-81, 2011 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-21743556

RESUMEN

We observe strong infrared (IR) radiation as a result of passive dispersive wave generation for a realistic microstructured fiber having two zero-dispersion wavelengths. The IR radiation frequency can be suitably controlled by varying the operational wavelength, which falls in the first normal dispersion regime. The amplitude of the radiation can be significantly increased by introducing a suitable amount of chirp in the input pulse. This strong phase-matching radiation can be considered as an alternative solution for the IR laser for different applications.

6.
Opt Express ; 19(11): 10443-55, 2011 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-21643299

RESUMEN

We observe unique dynamics of Raman soliton during supercontinuum process when an input pulse experiences initially normal group-velocity dispersion with a negative dispersion slope. In this situation, the blue components of the spectrum form a Raman soliton that moves faster than the input pulse and eventually decelerates because of Raman-induced frequency downshifting. In the time domain, the soliton trajectory bends and becomes vertical when the Raman shift ceases to occur as the spectrum of Raman soliton approaches the zero dispersion point. Parts of the red components of the pulse spectrum are captured by the Raman soliton through cross-phase modulation and they travel with it. The influence of soliton order, input chirp and dispersion slope on the dynamics of Raman soliton is discussed thoroughly.

7.
Opt Express ; 18(6): 5426-32, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20389559

RESUMEN

We report a picosecond fiber MOPA pumped supercontinuum source with 39 W output, spanning at least 0.4-2.25 microm at a repetition rate of 114.8 MHz. The 2m long PCF had a large, 4.4 microm diameter core and a high-delta design which led to an 80% coupling efficiency, high damage threshold and rapid generation of visible continuum generation from the picosecond input pulses. The high and relatively uniform power density across the visible spectral region was approximately 31.7 mW/nm corresponding to peak power density of approximately 12.5 W/nm for the 21 ps input pulses. The peak power density was increased to 26.9 W/nm by reducing the repetition rate to 28 MHz. This represents an increase in both average and peak power compared to previously reported visible supercontinuum sources from either CW pumped or pulsed-systems.


Asunto(s)
Amplificadores Electrónicos , Láseres de Estado Sólido , Transferencia de Energía , Diseño de Equipo , Análisis de Falla de Equipo
8.
Appl Opt ; 48(31): G12-20, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19881632

RESUMEN

We report supercontinuum generation in nonlinear microstructured optical fibers (MOFs) especially fabricated in a two-step stack and draw process having three rings of airholes. High air-filling fraction (>0.9) is obtained in a simple and straightforward way during the drawing process which is essential to enhance nonlinearity. Two of the fabricated samples are characterized and zero dispersion wavelength is tailored to achieve efficient pumping in the anomalous group velocity dispersion regime. The characteristics of the supercontinuum band as observed experimentally show good agreement with the predicted numerically simulated results, where soliton mediated dispersive waves are distinctly observed.

9.
Opt Lett ; 34(13): 2072-4, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19572003

RESUMEN

Dispersive waves (DW) are generated owing to perturbation of solitons by higher-order dispersion (HOD) and nonlinearity during supercontinuum (SC) generation. The frequencies of these waves are governed by a phase-matching condition in the form of a polynomial whose coefficients depend on the numerical values of the properly normalized third- and HOD parameters. Our extensive numerical solutions show that all odd HOD terms generate a single peak on the blue or the red side of the carrier frequency, depending on the sign of the corresponding term. In contrast, positive even HOD terms create conjugate DW peaks, in both the blue and red sides. No radiation is observed for negative values of these parameters. The combination of all even and odd HOD coefficients may generate more than two DW peaks for some specific choice of parameters. The results predicted by the phase-matching condition agree well with extensive numerical simulations revealing interesting facts of SC generation.

10.
Opt Express ; 17(6): 4913-9, 2009 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19293923

RESUMEN

We investigate a novel design for all-solid large mode area (LMA) leakage channel fibers (LCFs) for high-power Yb-doped fiber lasers and amplifiers, based on a single down-doped-silica rod ring surrounding a seven-cell pure-silica core, aiming for effectively single-mode behavior and low bending loss characteristics. Through detailed numerical simulations based on the finite element method (FEM), we find that the proposed all-solid LMA-LCFs, having a seven-cell core and two different sizes of down-doped rods, can achieve sufficient differential mode loss and much lower bending loss, as compared with a previously-reported LCF with a one-cell core and six large down-doped-silica rods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...