Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 26(3): 106172, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876139

RESUMEN

The paired-like homeobox transcription factor LEUTX is expressed in human preimplantation embryos between the 4- and 8-cell stages, and then silenced in somatic tissues. To characterize the function of LEUTX, we performed a multiomic characterization of LEUTX using two proteomics methods and three genome-wide sequencing approaches. Our results show that LEUTX stably interacts with the EP300 and CBP histone acetyltransferases through its 9 amino acid transactivation domain (9aaTAD), as mutation of this domain abolishes the interactions. LEUTX targets genomic cis-regulatory sequences that overlap with repetitive elements, and through these elements it is suggested to regulate the expression of its downstream genes. We find LEUTX to be a transcriptional activator, upregulating several genes linked to preimplantation development as well as 8-cell-like markers, such as DPPA3 and ZNF280A. Our results support a role for LEUTX in preimplantation development as an enhancer binding protein and as a potent transcriptional activator.

2.
iScience ; 25(4): 104137, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35402882

RESUMEN

Double homeobox 4 (DUX4) is expressed at the early pre-implantation stage in human embryos. Here we show that induced human DUX4 expression substantially alters the chromatin accessibility of non-coding DNA and activates thousands of newly identified transcribed enhancer-like regions, preferentially located within ERVL-MaLR repeat elements. CRISPR activation of transcribed enhancers by C-terminal DUX4 motifs results in the increased expression of target embryonic genome activation (EGA) genes ZSCAN4 and KHDC1P1. We show that DUX4 is markedly enriched in human zygotes, followed by intense nuclear DUX4 localization preceding and coinciding with minor EGA. DUX4 knockdown in human zygotes led to changes in the EGA transcriptome but did not terminate the embryos. We also show that the DUX4 protein interacts with the Mediator complex via the C-terminal KIX binding motif. Our findings contribute to the understanding of DUX4 as a regulator of the non-coding genome.

3.
Nat Genet ; 51(9): 1369-1379, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31477927

RESUMEN

Promoters and enhancers are key cis-regulatory elements, but how they operate to generate cell type-specific transcriptomes is not fully understood. We developed a simple and robust method, native elongating transcript-cap analysis of gene expression (NET-CAGE), to sensitively detect 5' ends of nascent RNAs in diverse cells and tissues, including unstable transcripts such as enhancer-derived RNAs. We studied RNA synthesis and degradation at the transcription start site level, characterizing the impact of differential promoter usage on transcript stability. We quantified transcription from cis-regulatory elements without the influence of RNA turnover, and show that enhancer-promoter pairs are generally activated simultaneously on stimulation. By integrating NET-CAGE data with chromatin interaction maps, we show that cis-regulatory elements are topologically connected according to their cell type specificity. We identified new enhancers with high sensitivity, and delineated primary locations of transcription within super-enhancers. Our NET-CAGE dataset derived from human and mouse cells expands the FANTOM5 atlas of transcribed enhancers, with broad applicability to biomedical research.


Asunto(s)
Regiones no Traducidas 5'/genética , Biología Computacional/métodos , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Regiones Promotoras Genéticas , ARN/genética , Transcripción Genética , Perfilación de la Expresión Génica , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Sitio de Iniciación de la Transcripción , Transcriptoma
4.
Mutat Res ; 800-802: 29-36, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28501645

RESUMEN

Hereditary hearing loss is characterized by a very high genetic heterogeneity. In the Qatari population the role of GJB2, the worldwide HHL major player, seems to be quite limited compared to Caucasian populations. In this study we analysed 18 Qatari families affected by non-syndromic hearing loss using a targeted sequencing approach that allowed us to analyse 81 genes simultaneously. Thanks to this approach, 50% of these families (9 out of 18) resulted positive for the presence of likely causative alleles in 6 different genes: CDH23, MYO6, GJB6, OTOF, TMC1 and OTOA. In particular, 4 novel alleles were detected while the remaining ones were already described to be associated to HHL in other ethnic groups. Molecular modelling has been used to further investigate the role of novel alleles identified in CDH23 and TMC1 genes demonstrating their crucial role in Ca2+ binding and therefore possible functional role in proteins. Present study showed that an accurate molecular diagnosis based on next generation sequencing technologies might largely improve molecular diagnostics outcome leading to benefits for both genetic counseling and definition of recurrence risk.


Asunto(s)
Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Análisis de Secuencia de ADN/métodos , Adolescente , Alelos , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Niño , Preescolar , Conexina 26 , Conexinas/genética , Femenino , Proteínas Ligadas a GPI/genética , Humanos , Lactante , Masculino , Proteínas de la Membrana/genética , Modelos Moleculares , Mutación , Cadenas Pesadas de Miosina/genética , Linaje , Conformación Proteica , Qatar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...