Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(5): e27243, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38463898

RESUMEN

Additive manufacturing has revolutionised the production of functional components and assemblies, offering a high degree of manufacturing flexibility. This review explores the latest advancements in additive manufacturing, focusing on its fusion-based and solid-state based technologies, and highlights the use of recycled aluminium as feedstock in these processes. The advantages and limitations of incorporating recycled materials are thoroughly analysed, considering factors such as material properties, sustainability, and process acceptance. While up to 14.4 kg CO2 per kg of aluminium is released during primary aluminium ingot production, solid-state based additive manufacturing, which is tolerant of feedstock contamination, can directly recycle aluminium. Meanwhile, fusion based additive manufacturing can readily utilise recycling pathways such as maintaining grade, upcycling, and downcycling, as well as powder reuse, providing opportunities for significant emissions reduction. The examination of feedstock manufacturing in this review, such as wire for WAAM and powder for PBF, indicates that this step indirectly increases the resource consumption of additive manufacturing. Finally, the alignment of aluminium recycling and additive manufacturing with Circular Economy principles and the UN's sustainable development goals are addressed, highlighting contributions to SDGs 3, 9, and 12.

2.
Nat Commun ; 15(1): 1715, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402279

RESUMEN

Porosity in directed energy deposition (DED) deteriorates mechanical performances of components, limiting safety-critical applications. However, how pores arise and evolve in DED remains unclear. Here, we reveal pore evolution mechanisms during DED using in situ X-ray imaging and multi-physics modelling. We quantify five mechanisms contributing to pore formation, migration, pushing, growth, removal and entrapment: (i) bubbles from gas atomised powder enter the melt pool, and then migrate circularly or laterally; (ii) small bubbles can escape from the pool surface, or coalesce into larger bubbles, or be entrapped by solidification fronts; (iii) larger coalesced bubbles can remain in the pool for long periods, pushed by the solid/liquid interface; (iv) Marangoni surface shear flow overcomes buoyancy, keeping larger bubbles from popping out; and (v) once large bubbles reach critical sizes they escape from the pool surface or are trapped in DED tracks. These mechanisms can guide the development of pore minimisation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...