Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38015641

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in the development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health, and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from patients with PAH. Endothelial haploinsufficiency of RAB7 caused spontaneous pulmonary hypertension (PH) in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA-Seq, and RAB7-silenced ECs showed impaired angiogenesis and expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, suggesting inhibition of autophagy at the predegradation level. Furthermore, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in rats with chronic hypoxia/SU5416. In conclusion, we demonstrate for the first time to our knowledge the fundamental impairment of EC function by loss of RAB7, causing PH, and show RAB7 activation to be a potential therapeutic strategy in a preclinical model of PH.


Asunto(s)
Hipertensión Pulmonar , Animales , Humanos , Ratones , Ratas , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar/etiología , Hipoxia/metabolismo , Pulmón/metabolismo , Arteria Pulmonar/metabolismo
2.
bioRxiv ; 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36778418

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating and progressive disease with limited treatment options. Endothelial dysfunction plays a central role in development and progression of PAH, yet the underlying mechanisms are incompletely understood. The endosome-lysosome system is important to maintain cellular health and the small GTPase RAB7 regulates many functions of this system. Here, we explored the role of RAB7 in endothelial cell (EC) function and lung vascular homeostasis. We found reduced expression of RAB7 in ECs from PAH patients. Endothelial haploinsufficiency of RAB7 caused spontaneous PH in mice. Silencing of RAB7 in ECs induced broad changes in gene expression revealed via RNA sequencing and RAB7 silenced ECs showed impaired angiogenesis, expansion of a senescent cell fraction, combined with impaired endolysosomal trafficking and degradation, which suggests inhibition of autophagy at the pre-degradation level. Further, mitochondrial membrane potential and oxidative phosphorylation were decreased, and glycolysis was enhanced. Treatment with the RAB7 activator ML-098 reduced established PH in chronic hypoxia/SU5416 rats. In conclusion, we demonstrate here for the first time the fundamental impairment of EC function by loss of RAB7 that leads to PH and show RAB7 activation as a potential therapeutic strategy in a preclinical model of PH.

3.
iScience ; 26(2): 105935, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36685041

RESUMEN

Pulmonary arterial hypertension (PAH) features pathogenic and abnormal endothelial cells (ECs), and one potential origin is clonal selection. We studied the role of p53 and toll-like receptor 3 (TLR3) in clonal expansion and pulmonary hypertension (PH) via regulation of bone morphogenetic protein (BMPR2) signaling. ECs of PAH patients had reduced p53 expression. EC-specific p53 knockout exaggerated PH, and clonal expansion reduced p53 and TLR3 expression in rat lung CD117+ ECs. Reduced p53 degradation (Nutlin 3a) abolished clonal EC expansion, induced TLR3 and BMPR2, and ameliorated PH. Polyinosinic/polycytidylic acid [Poly(I:C)] increased BMPR2 signaling in ECs via enhanced binding of interferon regulatory factor-3 (IRF3) to the BMPR2 promoter and reduced PH in p53-/- mice but not in mice with impaired TLR3 downstream signaling. Our data show that a p53/TLR3/IRF3 axis regulates BMPR2 expression and signaling in ECs. This link can be exploited for therapy of PH.

4.
Sci Rep ; 10(1): 1136, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980720

RESUMEN

One current concept suggests that unchecked proliferation of clonally selected precursors of endothelial cells (ECs) contribute to severe pulmonary arterial hypertension (PAH). We hypothesized that clonally selected ECs expressing the progenitor marker CD117 promote severe occlusive pulmonary hypertension (PH). The remodelled pulmonary arteries of PAH patients harboured CD117+ ECs. Rat lung CD117+ ECs underwent four generations of clonal expansion to enrich hyperproliferative ECs. The resulting clonally enriched ECs behaved like ECs, as measured by in vitro and in vivo angiogenesis assays. The same primitive ECs showed a limited ability for mesenchymal lineage differentiation. Endothelial differentiation and function were enhanced by blocking TGF-ß signalling, promoting bone morphogenic protein (BMP) signalling. The transplantation of the EC clones caused arterio-occlusive PH in rats exposed to chronic hypoxia. These EC clones engrafted in the pulmonary arteries. Yet cessation of chronic hypoxia promoted lung cell apoptosis and resolution of vascular lesions. In conclusion, this is to the best of our knowledge, the first report that clonally enriched primitive ECs promote occlusive pulmonary arteriopathy and severe PH. These primitive EC clones further give rise to cells of endothelial and mesenchymal lineage as directed by BMP and TGF-ß signaling.


Asunto(s)
Arteriopatías Oclusivas/etiología , Células Endoteliales/patología , Hipertensión Pulmonar/etiología , Hipoxia/patología , Arteria Pulmonar/patología , Animales , Apoptosis , Arteriopatías Oclusivas/patología , Proteínas Morfogenéticas Óseas/fisiología , Linaje de la Célula , Separación Celular , Células Cultivadas , Enfermedad Crónica , Células Clonales , Células Endoteliales/química , Células Endoteliales/trasplante , Citometría de Flujo , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Hipoxia/complicaciones , Masculino , Mesodermo/citología , Proteínas Proto-Oncogénicas c-kit/análisis , Ratas , Ratas Sprague-Dawley , Receptor Tipo I de Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Transducción de Señal , Transcriptoma , Factor de Crecimiento Transformador beta/fisiología
5.
PLoS One ; 14(3): e0213890, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30883593

RESUMEN

Uncontrolled proliferation of endothelial cells is essential to the pathogenesis of pulmonary arterial hypertension (PAH). Both proliferation and cytoskeleton reorganization are associated with upregulation of the intermediate filament protein Nestin. Recently, accumulation of Nestin-expressing cells was found in pulmonary vascular lesions of PAH patients. The goal of this study is to determine if Nestin expression contributes to endothelial proliferation in pulmonary arterial hypertension, using both lung tissues and endothelial cells. Here we found that endothelial cells from complex and plexiform lesions of PAH patients expressed Nestin. These Nestin+ cells further stained positive for the angiogenic factors CXC chemokine ligand 12 and Wnt1. Likewise, in the chronic hypoxia/SU5416 animal model of pulmonary hypertension, Nestin+ endothelial cells were found in occlusive pulmonary vascular lesions. In vitro, both growing rat and human lung endothelial cells expressed Nestin protein. When Nestin was overexpressed in endothelial cells (both rat and human), Nestin overexpression promoted proliferation and expression of CXC chemokine ligand 12. Nestin overexpression further increased angiogenic tube formation in vitro. Conclusions: We found increased Nestin expression from endothelial cells of occlusive lung vascular lesions in severe pulmonary hypertension. Elevated Nestin expression likely contributes to unchecked pulmonary vascular proliferation and angiogenesis, possibly via induction of CXC chemokine ligand 12. Additional studies are required to determine whether targeting Nestin would be beneficial to treat PAH.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Nestina/metabolismo , Adulto , Anciano , Animales , Proliferación Celular , Células Cultivadas , Quimiocina CXCL12/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Femenino , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Pulmón/patología , Masculino , Persona de Mediana Edad , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nestina/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Adulto Joven
6.
Am J Respir Crit Care Med ; 199(2): 199-210, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30211629

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is characterized by vascular cell proliferation and endothelial cell apoptosis. TLR3 (Toll-like receptor 3) is a receptor for double-stranded RNA and has been recently implicated in vascular protection. OBJECTIVES: To study the expression and role of TLR3 in PAH and to determine whether a TLR3 agonist reduces pulmonary hypertension in preclinical models. METHODS: Lung tissue and endothelial cells from patients with PAH were investigated by polymerase chain reaction, immunofluorescence, and apoptosis assays. TLR3-/- and TLR3+/+ mice were exposed to chronic hypoxia and SU5416. Chronic hypoxia or chronic hypoxia/SU5416 rats were treated with the TLR3 agonist polyinosinic/polycytidylic acid (Poly[I:C]). MEASUREMENTS AND MAIN RESULTS: TLR3 expression was reduced in PAH patient lung tissue and endothelial cells, and TLR3-/- mice exhibited more severe pulmonary hypertension following exposure to chronic hypoxia/SU5416. TLR3 knockdown promoted double-stranded RNA signaling via other intracellular RNA receptors in endothelial cells. This was associated with greater susceptibility to apoptosis, a known driver of pulmonary vascular remodeling. Poly(I:C) increased TLR3 expression via IL-10 in rat endothelial cells. In vivo, high-dose Poly(I:C) reduced pulmonary hypertension in both rat models in proof-of-principle experiments. In addition, Poly(I:C) also reduced right ventricular failure in established pulmonary hypertension. CONCLUSIONS: Our work identifies a novel role for TLR3 in PAH based on the findings that reduced expression of TLR3 contributes to endothelial apoptosis and pulmonary vascular remodeling.


Asunto(s)
Hipertensión Pulmonar/genética , Receptor Toll-Like 3/genética , Animales , Modelos Animales de Enfermedad , Humanos , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Ratones , Ratas , Transducción de Señal , Receptor Toll-Like 3/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...