Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Commun ; 14(1): 6152, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37788990

RESUMEN

Microbial production of succinic acid (SA) at an industrially relevant scale has been hindered by high downstream processing costs arising from neutral pH fermentation for over three decades. Here, we metabolically engineer the acid-tolerant yeast Issatchenkia orientalis for SA production, attaining the highest titers in sugar-based media at low pH (pH 3) in fed-batch fermentations, i.e. 109.5 g/L in minimal medium and 104.6 g/L in sugarcane juice medium. We further perform batch fermentation using sugarcane juice medium in a pilot-scale fermenter (300×) and achieve 63.1 g/L of SA, which can be directly crystallized with a yield of 64.0%. Finally, we simulate an end-to-end low-pH SA production pipeline, and techno-economic analysis and life cycle assessment indicate our process is financially viable and can reduce greenhouse gas emissions by 34-90% relative to fossil-based production processes. We expect I. orientalis can serve as a general industrial platform for production of organic acids.


Asunto(s)
Reactores Biológicos , Ácido Succínico , Fermentación , Pichia
3.
Metab Eng ; 76: 18-28, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36626963

RESUMEN

Plants produce many high-value oleochemical molecules. While oil-crop agriculture is performed at industrial scales, suitable land is not available to meet global oleochemical demand. Worse, establishing new oil-crop farms often comes with the environmental cost of tropical deforestation. The field of metabolic engineering offers tools to transplant oleochemical metabolism into tractable hosts while simultaneously providing access to molecules produced by non-agricultural plants. Here, we evaluate strategies for rewiring metabolism in the oleaginous yeast Yarrowia lipolytica to synthesize a foreign lipid, 3-acetyl-1,2-diacyl-sn-glycerol (acTAG). Oils made up of acTAG have a reduced viscosity and melting point relative to traditional triacylglycerol oils making them attractive as low-grade diesels, lubricants, and emulsifiers. This manuscript describes a metabolic engineering study that established acTAG production at g/L scale, exploration of the impact of lipid bodies on acTAG titer, and a techno-economic analysis that establishes the performance benchmarks required for microbial acTAG production to be economically feasible.


Asunto(s)
Yarrowia , Triglicéridos/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ingeniería Metabólica , Metabolismo de los Lípidos , Aceites/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...