Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1344928, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379952

RESUMEN

Introduction: Wheat is a staple food crop for over one-third of the global population. However, the stability of wheat productivity is threatened by heat waves associated with climate change. Heat stress at the reproductive stage can result in pollen sterility and failure of grain development. Methods: This study used transcriptome data analysis to explore the specific expression of long non-coding RNAs (lncRNAs) in response to heat stress during pollen development in four wheat cultivars. Results and discussion: We identified 11,054 lncRNA-producing loci, of which 5,482 lncRNAs showed differential expression in response to heat stress. Heat-responsive lncRNAs could target protein-coding genes in cis and trans and in lncRNA-miRNA-mRNA regulatory networks. Gene ontology analysis predicted that target protein-coding genes of lncRNAs regulate various biological processes such as hormonal responses, protein modification and folding, response to stress, and biosynthetic and metabolic processes. We also noted some paired lncRNA/protein-coding gene modules and some lncRNA-miRNA-mRNA regulatory modules shared in two or more wheat cultivars. These modules were related to regulating plant responses to heat stress, such as heat-shock proteins and transcription factors, and protein domains, such as MADS-box, Myc-type, and Alpha crystallin/Hsp20 domain. Conclusion: Our results provide the basic knowledge and molecular resources for future functional studies investigating wheat reproductive development under heat stress.

2.
Plant Physiol Biochem ; 206: 108233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38134737

RESUMEN

Heat waves associated with climate change seriously threaten crop productivity. Crop seed yield depends on the success of reproduction. However, reproductive development is most vulnerable to heat stress conditions. Perception of heat and its conversion into cellular signals is a complex process. The basic helix loop helix (bHLH) transcription factor, Phytochrome Interacting Factor 4 (PIF4), plays a significant role in this process. However, studies on PIF4- mediated impacts on crop grain yield at a higher temperature are lacking. We investigated the overexpression of GmPIF4b in soybean to alleviate heat-induced damage and yield using a transgenic approach. Our results showed that under high-temperature conditions (38°C/28°C), overexpressing soybeans plants had higher chlorophyll a and b, and lower proline accumulation compared to WT. Further, overexpression of GmPIF4b improved pollen viability under heat stress and reduced heat-induced structural abnormalities in the male and female reproductive organs. Consequently, the transgenic plants produced higher pods and seeds per plant at high temperatures. Quantitative RT-PCR analysis showed that the overexpressing GmPIF4b soybeans had higher transcripts of heat shock factor, GmHSF-34, and heat-shock protein, GmHSP90A2. Collectively, our results suggest that GmPIF4b regulates multiple morpho-physiological traits for better yield under warmer climatic conditions.


Asunto(s)
Glycine max , Fitocromo , Glycine max/genética , Clorofila A , Fenotipo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Choque Térmico , Grano Comestible
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA