Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 15: 1327372, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736889

RESUMEN

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with arrhythmogenic right ventricular cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. Cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interactions; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.


Asunto(s)
Displasia Ventricular Derecha Arritmogénica , Linfocitos B , Cardiomiopatía Dilatada , Miocardio , Humanos , Cardiomiopatía Dilatada/inmunología , Cardiomiopatía Dilatada/genética , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Miocardio/metabolismo , Miocardio/inmunología , Miocardio/patología , Masculino , Femenino , Comunicación Celular/inmunología , Perfilación de la Expresión Génica , Persona de Mediana Edad , Adulto , Transcriptoma , Regulación de la Expresión Génica
2.
bioRxiv ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38766182

RESUMEN

Cardiovascular disease remains the leading cause of death worldwide. A primary driver of cardiovascular mortality is ischemic heart failure, a form of cardiac dysfunction that develops in patients who survive myocardial infarction. Acute cardiac damage triggers robust changes in the spleen with rapid migration of immune cells from the spleen to the heart. Activating this "cardio-splenic" axis contributes to progressive cardiac dysfunction. The cardio-splenic axis has, therefore, been identified as a promising therapeutic target to prevent or treat heart failure. However, our understanding of the precise mechanisms by which specific immune cells contribute to adverse cardiac remodeling within the cardio-splenic axis remains limited. Here, we show that splenic B cells contribute to the development of heart failure via MHC II-mediated antigen presentation. We found that the transfer of splenic B cells from mice with ischemic heart failure promoted adverse cardiac remodeling and splenic inflammatory changes in naïve recipient mice. Based on single-cell RNA sequencing analysis of splenic B cells from mice with ischemic heart failure, we hypothesized that B cells contributed to adverse cardiac remodeling through antigen presentation by MHC II molecules. This mechanism was confirmed using transgenic mice with B cell-specific MHC II deletion and by analyzing circulating B cells from humans who experienced myocardial infarction. Our results broaden our understanding of B lymphocyte biology, reshape current models of immune activation in response to cardiac injury, and point towards MHC II-mediated signaling in B cells as a novel and specific therapeutic target in chronic heart failure.

4.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293212

RESUMEN

Introduction: Growing evidence from animal models indicates that the myocardium hosts a population of B cells that play a role in the development of cardiomyopathy. However, there is minimal data on human myocardial B cells in the context of cardiomyopathy. Methods: We integrated single-cell and single-nuclei datasets from 45 healthy human hearts, 70 hearts with dilated cardiomyopathy (DCM), and 8 hearts with Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC). Interactions between B cells and other cell types were investigated using the CellChat Package. Differential gene expression analysis comparing B cells across conditions was performed using DESeq2. Pathway analysis was performed using Ingenuity, KEGG, and GO pathways analysis. Results: We identified 1,100 B cells, including naive B cells and plasma cells. B cells showed an extensive network of interactions within the healthy myocardium that included outgoing signaling to macrophages, T cells, endothelial cells, and pericytes, and incoming signaling from endothelial cells, pericytes, and fibroblasts. This niche relied on ECM-receptor, contact, and paracrine interaction; and changed significantly in the context of cardiomyopathy, displaying disease-specific features. Differential gene expression analysis showed that in the context of DCM both naive and plasma B cells upregulated several pathways related to immune activation, including upregulation of oxidative phosphorylation, upregulation of leukocyte extravasation, and, in naive B cells, antigen presentation. Discussion: The human myocardium contains naive B cells and plasma cells, integrated into a diverse and dynamic niche that has distinctive features in healthy myocardium, DCM, and ARVC. Naive myocardial-associated B cells likely contribute to the pathogenesis of human DCM.

5.
bioRxiv ; 2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37873308

RESUMEN

Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. However, despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and support the development of therapeutic options for T. brucei-associated cardiac disease.

6.
JACC Heart Fail ; 11(9): 1231-1242, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37542511

RESUMEN

BACKGROUND: The pathophysiology of peripartum cardiomyopathy (PPCM) and its distinctive biological features remain incompletely understood. High-throughput serum proteomic profiling, a powerful tool to gain insights into the pathophysiology of diseases at a systems biology level, has never been used to investigate PPCM relative to nonischemic cardiomyopathy. OBJECTIVES: The aim of this study was to characterize the pathophysiology of PPCM through serum proteomic analysis. METHODS: Aptamer-based proteomic analysis (SomaScan 7K) was performed on serum samples from women with PPCM (n = 67), women with nonischemic nonperipartum cardiomyopathy (NPCM) (n = 31), and age-matched healthy peripartum and nonperipartum women (n = 10 each). Serum samples were obtained from the IPAC (Investigation of Pregnancy-Associated Cardiomyopathy) and IMAC2 (Intervention in Myocarditis and Acute Cardiomyopathy) studies. RESULTS: Principal component analysis revealed unique clustering of each patient group (P for difference <0.001). Biological pathway analyses of differentially measured proteins in PPCM relative to NPCM, before and after normalization to pertinent healthy controls, highlighted specific dysregulation of inflammatory pathways in PPCM, including the upregulation of the cholesterol metabolism-related anti-inflammatory pathway liver-X receptor/retinoid-X receptor (LXR/RXR) (P < 0.01, Z-score 1.9-2.1). Cardiac recovery by 12 months in PPCM was associated with the downregulation of pro-inflammatory pathways and the upregulation of LXR/RXR, and an additional RXR-dependent pathway involved in the regulation of inflammation and metabolism, peroxisome proliferator-activated receptor α/RXRα signaling. CONCLUSIONS: Serum proteomic profiling of PPCM relative to NPCM and healthy controls indicated that PPCM is a distinct disease entity characterized by the unique dysregulation of inflammation-related pathways and cholesterol metabolism-related anti-inflammatory pathways. These findings provide insight into the pathophysiology of PPCM and point to novel potential therapeutic targets.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Complicaciones Cardiovasculares del Embarazo , Trastornos Puerperales , Embarazo , Humanos , Femenino , Periodo Periparto , Proteómica , Trastornos Puerperales/terapia , Complicaciones Cardiovasculares del Embarazo/terapia , Inflamación , Colesterol
7.
J Immunol ; 210(9): 1198-1207, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068299

RESUMEN

The mammalian heart is characterized by the presence of striated myocytes, which allow continuous rhythmic contraction from early embryonic development until the last moments of life. However, the myocardium contains a significant contingent of leukocytes from every major class. This leukocyte pool includes both resident and nonresident immune cells. Over recent decades, it has become increasingly apparent that the heart is intimately sensitive to immune signaling and that myocardial leukocytes exhibit an array of critical functions, both in homeostasis and in the context of cardiac adaptation to injury. Here, we systematically review current knowledge of all major leukocyte classes in the heart, discussing their functions in health and disease. We also highlight the connection between the myocardium, immune cells, lymphoid organs, and both local and systemic immune responses.


Asunto(s)
Miocardio , Miocitos Cardíacos , Animales , Leucocitos , Transducción de Señal , Mamíferos
8.
Curr Cardiol Rep ; 24(8): 935-946, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35689723

RESUMEN

PURPOSE OF REVIEW: To summarize the current knowledge on the role that B lymphocytes play in heart failure. RECENT FINDINGS: Several studies from murine models have shown that B cells modulate cardiac adaptation to injury and ultimately affect the degree of cardiac dysfunction after acute ischemic damage. In addition, a B cell-modulating small molecule was recently shown to have beneficial effects in humans with heart failure with preserved ejection fraction. B lymphocytes are specialized immune cells present in all jawed vertebrates. They are characteristically known for their ability to produce antibodies, but they have other functions and are important players in virtually all forms of immune responses. A growing body of evidence indicates that B cells are intimately connected with the heart and that B cell dysregulation might play a role in the pathogenesis and progression of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. B cells are therefore gathering attention as potential targets for the development of novel immunomodulatory-based treatments for heart failure.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Animales , Linfocitos B , Cardiomiopatías/complicaciones , Humanos , Ratones , Pronóstico , Volumen Sistólico/fisiología , Función Ventricular Izquierda/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...