Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 311: 114857, 2022 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-35278922

RESUMEN

A new approach of solvent-assisted cavitation process was proposed for degradation of organic pollutants. The process envisages the use of suitable solvent as an additive, (1-5% v/V), in the conventional cavitation process to enhance the pollutant removal efficiency. A proof of concept was provided for the removal of ammoniacal nitrogen with significantly improved efficiency using solvent-assisted hydrodynamic cavitation (HC) compared to conventional HC. The efficacy of the process was studied on a pilot plant scale (1 m3/h) and using vortex flow based vortex diode as a cavitating device. Degradation studies were carried out using a model pollutant, 4-aminophenol and four different solvents as additives, 1-octanol, cyclohexanol, 1-octane and toluene. Relatively polar solvents were found to increase the efficiency of the pollutant removal (>65%) and also increase the rates to an extent of more than 200%, compared to only HC. A very high removal of ammoniacal nitrogen, more than 90%, was obtained for solvents 1-octanol and cyclohexanol, indicating the importance of the selection of solvent. Per-pass degradation model showed 3 to 4 times increase in the per pass degradation for polar solvents compared to cavitation alone. The results confirm no role of conventional solvent extraction and no specific contamination of wastewater due to the use of solvent as an additive in the process. Further, the cost was 2-3 times lower as compared to the conventional HC. The interesting observations in the proposed process can fuel further research to provide possible improvements in existing methodologies of wastewater treatment, in general, and for removal of ammoniacal nitrogen, in particular.

2.
Ultrason Sonochem ; 70: 105306, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32795930

RESUMEN

The present study reports significant improvements in the removal of ammoniacal nitrogen from wastewater which is an important problem for many industries such as dyes and pigment, distilleries and fisheries. Pilot plant studies (capacity, 1 m3/h) on synthetic wastewater using 4-amino phenol as model nitrogen containing organic compound and two real industrial effluents of high ammoniacal nitrogen content were carried out using hydrodynamic cavitation. Two reactor geometries were evaluated for increased efficiency in removal-orifice and vortex diode. Effect of initial concentration (100-500 mg/L), effect of pressure drop (0.5-5 bar) and nature of cavitating device (linear and vortex flow for cavitation) were evaluated along with effect of salt content, effect of hydrogen peroxide addition and aeration. Initial concentration was found to have significant impact on the extent of removal: ~ 5 g/m3 removal for initial concentration of 100 mg/L and up to 12 g/m3 removal at high concentration of 500 mg/L. Interestingly, significant improvement of the order of magnitude (up to 8 times) in removal of ammoniacal nitrogen could be obtained by sparging air or oxygen in hydrodynamic cavitation and a very high removal of above 80% could be achieved. The removal of ammoniacal nitrogen by vortex diode was also found to be effective in the industrial wastewaters and results on two different effluent samples of distillery industry indicated up to 75% removal, though with longer time of treatment compared to that of synthetic wastewater. The developed methodology of hydrodynamic cavitation technology with aeration and vortex diode as a cavitating device was found to be highly effective for improving the efficiency of the conventional cavitation methods and hence can be highly useful in industrial wastewater treatment, specifically for the removal of ammoniacal nitrogen.

3.
Ultrason Sonochem ; 69: 105272, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32739732

RESUMEN

The present study reports, for the first time, a new and techno-economic strategy for effective removal of antimicrobial resistant bacteria (AMR) and difficult, opportunistic pathogen using cavitation and natural oils/plant extract. A hybrid methodology using natural oils of known health benefits has been discussed in combination with conventional physico-chemical method of hydrodynamic cavitation that not only provides efficient and effective water disinfection, but also eliminates harmful effects of conventional methods such as formation of disinfection by-products apart from reducing cost of treatment. A proof-of concept is demonstrated by achieving exceptionally high rates for practically complete removal of antimicrobial resistant (AMR) and relatively less researched, gram-negative opportunistic pathogen, Pseudomonas aeruginosa and gram-positive methicillin resistant, Staphylococcus aureus using a natural oil-Peppermint oil and two different cavitating reactors employing vortex flow (vortex diode) and linear flow (orifice) for hydrodynamic cavitation. >99% disinfection could be obtained, typically in less than 10 min, using vortex diode with operating pressure drop of 1 bar and low dose of 0.1% peppermint oil as an additive, depicting very high rates of disinfection. The rate of disinfection can be further increased by using simple aeration which can result in significant lowering of oil dose. The conventional device, orifice requires relatively higher pressure drop of 2 bar and comparatively more time (~20 min) for disinfection. The cost of the disinfection was also found to be significantly lower compared to most conventional processes indicating techno-economic feasibility in employing the developed hybrid method of disinfection for effectively eliminating bacteria including AMR bacteria from water. The developed approach not only highlights importance of going back to nature for not just conventional water disinfection, but also for eliminating hazardous AMR bacteria and may also find utility in many other applications for the removal of antimicrobial bacteria.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana , Hidrodinámica , Extractos Vegetales/farmacología , Aceites de Plantas/farmacología , Acústica , Desinfección/métodos , Tecnología Química Verde/métodos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Extractos Vegetales/química , Aceites de Plantas/química , Pseudomonas aeruginosa/efectos de los fármacos , Microbiología del Agua , Purificación del Agua/métodos
4.
Ultrason Sonochem ; 61: 104820, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31675658

RESUMEN

The present study is an attempt to improvise the hydrodynamic cavitation methodology for effective disinfection of water and also to suggest prototype development for practical application. The enhancement in the disinfection efficiency was evaluated specifically for the effect of pressure, temperature, pH, microbial inoculum size and also on effect of different additives for the two model microbial strains, gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus). The efficacy of the hydrodynamic cavitation is evaluated for the two types of flows/cavitation devices - linear flow in the case of orifice and vortex flow for vortex diode. The vortex diode requires significantly lower pressures, 50% lower as compared to orifice for the similar extent of disinfection. While the bacterial disinfection at high temperature is known, the usefulness of hydrodynamic cavitation is especially evident at ambient conditions and the process is effective even at very high concentrations of bacteria, not reported so far. The reactor geometry also has significant effect on the disinfection. The present study, for the first time, reports possible use of different natural oils such as castor oil, cinnamon oil, eucalyptus oil and clove oil in conjunction with hydrodynamic cavitation. The nature of oil modifies the cavitation behavior and an order of magnitude enhancement in the cavitation rate was observed for the two oils, eucalyptus and clove oil for a very small concentration of 0.1%. The increased rates of disinfection, of the order of 2-4 folds, using oil can drastically reduce the time of operation and consequently reduce cost of disinfection. A possible mechanism is proposed for the effect of oil and hydrodynamic cavitation in cell destruction through the rupture of cell wall, oxidative damage and possible DNA denaturation. A cavitation model using per pass disinfection was used to correlate the data. The increased efficiency using oils and possible benefits of the developed process, where natural oils can be perceived as biocatalysts, can have significant advantages in practical applications.


Asunto(s)
Desinfectantes/farmacología , Aceites de Plantas/farmacología , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos
5.
J Environ Manage ; 242: 210-219, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31039530

RESUMEN

The present study successfully demonstrates greener methodology of hydrodynamic cavitation using rotational flows for disinfection of water. Disinfection of two model microbial strains-gram- negative (Escherichia coli) and gram-positive (Staphylococcus aureus) using vortex diode was evaluated. The removal efficacy was quantified for two different cavitation reactors. Practically complete elimination of E. coli was achieved (99%) after 1 h of cavitation at a pressure drop of only 0.5 bar. However, elimination of S. aureus using vortex diode was observed to be lower in comparison to the removal of E. coli and only 60% disinfection could be achieved under similar conditions, which can be subsequently enhanced up to 98% by increasing pressure drop. The results were compared with another cavitating device that employs linear flow for cavitation, orifice. The reactor geometry has significant impact on the disinfection process and orifice was found to require significantly higher pressure drop (10 bar) conditions for disinfection and for eliminating gram-positive bacteria with high efficiency. A plausible mechanism for disinfection was proposed to elucidate the role of cavitation in cell destruction leading to death of cells through the rupture of cell wall, oxidative damage and possible DNA denaturation. Also, a cavitation model using per pass disinfection was developed that can provide meaningful physical description of the disinfection process as against the conventional first order reaction rate model. This study would provide meaningful insight into cavitation process based on hydrodynamic cavitation for the destruction of both gram-negative and gram-positive bacteria from various water sources, including industrial wastewaters.


Asunto(s)
Hidrodinámica , Purificación del Agua , Desinfección , Escherichia coli , Staphylococcus aureus , Agua
6.
J Environ Manage ; 226: 95-105, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30114577

RESUMEN

In the present study, two synthesis methods of nanocomposites-one involving a mixture of biomass and the other using chemical modification were investigated to evaluate practical application of green approach in pollution control, specifically for water and wastewater treatment. Newer multifunctional superparamagnetic nanocomposites using biomaterials such as unripened fruit of Cassia fistula (Golden shower) and Aloe vera were developed as an example of green approach while chemical modification was illustrated using n-octanol. Two specific model applications were studied for the developed materials-dye removal (Methyl Blue and Congo Red) and disinfection-demonstrating antimicrobial property. To elucidate the multifunctional character, the texture, morphology and composition of the prepared bionanocomposites were studied. The surface area values were 6.2 and 9.8 m2/g for Aloe vera and octanol based nanocomposites while the average pore diameters were 1.79 nm and 5.7 nm respectively, indicating presence of highly developed micropores in the first material having a honeycomb shape and the later showing excellent staircase type formation with larger pores. A very high dye removal to the extent of 100% was obtained that can be attributed largely to the functionalities imparted from Cassia fistula compared to ingredients from Aloe vera and octanol. The nanomaterials could be completely separated with absolute ease by applying simple magnetic field. Also, successful application of the developed materials in disinfection, removal of E. coli, was demonstrated with a very high efficiency of over 95%. The biomass derived nanocomposites exhibit excellent pollutant removal and disinfection properties, even at very low nanoparticle content; octanol based material indicating ∼5 times lowered cost, while the Aloe vera based bionanocomposites have potential for cost reduction to the extent of 10 times as compared to only magnetite nanoparticles, thereby highlighting techno-economical alternative in water and wastewater treatment.


Asunto(s)
Nanocompuestos , Aguas Residuales , Biomasa , Escherichia coli , Agua , Purificación del Agua
7.
Sci Rep ; 6: 33021, 2016 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-27605492

RESUMEN

A novel approach is developed for desulphurization of fuels or organics without use of catalyst. In this process, organic and aqueous phases are mixed in a predefined manner under ambient conditions and passed through a cavitating device. Vapor cavities formed in the cavitating device are then collapsed which generate (in-situ) oxidizing species which react with the sulphur moiety resulting in the removal of sulphur from the organic phase. In this work, vortex diode was used as a cavitating device. Three organic solvents (n-octane, toluene and n-octanol) containing known amount of a model sulphur compound (thiophene) up to initial concentrations of 500 ppm were used to verify the proposed method. A very high removal of sulphur content to the extent of 100% was demonstrated. The nature of organic phase and the ratio of aqueous to organic phase were found to be the most important process parameters. The results were also verified and substantiated using commercial diesel as a solvent. The developed process has great potential for deep of various organics, in general, and for transportation fuels, in particular.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA