Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
BMC Med Imaging ; 24(1): 206, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123118

RESUMEN

A recent global health crisis, COVID-19 is a significant global health crisis that has profoundly affected lifestyles. The detection of such diseases from similar thoracic anomalies using medical images is a challenging task. Thus, the requirement of an end-to-end automated system is vastly necessary in clinical treatments. In this way, the work proposes a Squeeze-and-Excitation Attention-based ResNet50 (SEA-ResNet50) model for detecting COVID-19 utilizing chest X-ray data. Here, the idea lies in improving the residual units of ResNet50 using the squeeze-and-excitation attention mechanism. For further enhancement, the Ranger optimizer and adaptive Mish activation function are employed to improve the feature learning of the SEA-ResNet50 model. For evaluation, two publicly available COVID-19 radiographic datasets are utilized. The chest X-ray input images are augmented during experimentation for robust evaluation against four output classes namely normal, pneumonia, lung opacity, and COVID-19. Then a comparative study is done for the SEA-ResNet50 model against VGG-16, Xception, ResNet18, ResNet50, and DenseNet121 architectures. The proposed framework of SEA-ResNet50 together with the Ranger optimizer and adaptive Mish activation provided maximum classification accuracies of 98.38% (multiclass) and 99.29% (binary classification) as compared with the existing CNN architectures. The proposed method achieved the highest Kappa validation scores of 0.975 (multiclass) and 0.98 (binary classification) over others. Furthermore, the visualization of the saliency maps of the abnormal regions is represented using the explainable artificial intelligence (XAI) model, thereby enhancing interpretability in disease diagnosis.


Asunto(s)
COVID-19 , Radiografía Torácica , COVID-19/diagnóstico por imagen , Humanos , Radiografía Torácica/métodos , SARS-CoV-2 , Inteligencia Artificial , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Algoritmos , Aprendizaje Profundo , Pulmón/diagnóstico por imagen
2.
BMC Med Imaging ; 24(1): 82, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589813

RESUMEN

Breast Cancer is a significant global health challenge, particularly affecting women with higher mortality compared with other cancer types. Timely detection of such cancer types is crucial, and recent research, employing deep learning techniques, shows promise in earlier detection. The research focuses on the early detection of such tumors using mammogram images with deep-learning models. The paper utilized four public databases where a similar amount of 986 mammograms each for three classes (normal, benign, malignant) are taken for evaluation. Herein, three deep CNN models such as VGG-11, Inception v3, and ResNet50 are employed as base classifiers. The research adopts an ensemble method where the proposed approach makes use of the modified Gompertz function for building a fuzzy ranking of the base classification models and their decision scores are integrated in an adaptive manner for constructing the final prediction of results. The classification results of the proposed fuzzy ensemble approach outperform transfer learning models and other ensemble approaches such as weighted average and Sugeno integral techniques. The proposed ResNet50 ensemble network using the modified Gompertz function-based fuzzy ranking approach provides a superior classification accuracy of 98.986%.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Detección Precoz del Cáncer , Mamografía , Bases de Datos Factuales , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA