Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(4): e4979, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533548

RESUMEN

Proteome diversities and their biological functions are significantly amplified by post-translational modifications (PTMs) of proteins. Shotgun proteomics, which does not typically survey PTMs, provides an incomplete picture of the complexity of human biopsies in health and disease. Recent advances in mass spectrometry-based proteomic techniques that enrich and study PTMs are helping to uncover molecular detail from the cellular level to system-wide functions, including how the microbiome impacts human diseases. Protein heterogeneity and disease complexity are challenging factors that make it difficult to characterize and treat disease. The search for clinical biomarkers to characterize disease mechanisms and complexity related to patient diagnoses and treatment has proven challenging. Knowledge of PTMs is fundamentally lacking. Characterization of complex human samples that clarify the role of PTMs and the microbiome in human diseases will result in new discoveries. This review highlights the key role of proteomic techniques used to characterize unknown biological functions of PTMs derived from complex human biopsies. Through the integration of diverse methods used to profile PTMs, this review explores the genetic regulation of proteoforms, cells of origin expressing specific proteins, and several bioactive PTMs and their subsequent analyses by liquid chromatography and tandem mass spectrometry.


Asunto(s)
Procesamiento Proteico-Postraduccional , Proteómica , Humanos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos , Proteoma , Biopsia
2.
Sci Rep ; 13(1): 2630, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788264

RESUMEN

Gladiolus (Gladiolus grandiflorus Andrews) is a high-valued bulbous cut flower. However, the shorter postharvest life of the gladiolus, limits its marketing and commercial value. In the present investigation, the effect of lemon grass (LG) essential oil as an antimicrobial agent was studied towards increasing the vase life of gladiolus. The results revealed that as compared to control (distilled water), treatment with a lower concentration of 5 µL L-1 LG essential oil prolonged the vase life of gladiolus up to 11 days (d). Scanning Electron Microscope (SEM) observation indicated that the sample treated with 5 µL L-1 LG essential oil showed intact vasculature, suggesting reduced microbial blockage at the stem end which was further corroborated by microbial count. Biochemical analysis suggested an increased level of total soluble sugars, carotenoid content, lower MDA accumulation, and higher activity of antioxidant enzymes in LG treated flowers. Moreover, transcripts levels of genes associated with senescence viz., GgCyP1 and GgERS1a were downregulated, while expression of GDAD1 and antioxidant genes such as GgP5C5, GgPOD 1, GgMnSOD, and GgCAT1 were upregulated in LG treated cut spikes as compared to control. Among various treatments we have concluded that, the vase life of the gladiolus cut spike was improved along with the relative fresh flower weight and diameter of flower at the lower dose of 5 µL L-1 LG oil in the vase solution. Thus, LG oil as an eco-friendly agent has the potential to extend the postharvest life of cut flowers.


Asunto(s)
Cymbopogon , Iridaceae , Aceites Volátiles , Agua/metabolismo , Antioxidantes/farmacología , Antioxidantes/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/metabolismo , Expresión Génica
3.
Curr Pharm Des ; 28(28): 2312-2329, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35676839

RESUMEN

One of the major global health care crises in the 21st century is antibiotic resistance. Almost all clinically used antibiotics have resistance emerging to them. Antibiotic Resistance can be regarded as the 'Faceless Pandemic' that has enthralled the entire world. It has become peremptory to develop treatment options as an alternative to antibiotic therapy for combating antibiotic-resistant pathogens. A clearer understanding of antibiotic resistance is required to prevent the rapid spread of antibiotic-resistant genes and the re-emergence of infections. The present review provides an insight into the different classifications and modes of action of antibiotics to understand how the hosts develop resistance to them. In addition, the association of genetics in the development of antibiotic resistance and environmental factors has also been discussed, emphasizing developing action plans to counter this "quiescent pandemic". It is also pertinent to create models that can predict the early resistance so that treatment strategies may build up in advance with the evolving resistance.


Asunto(s)
Antibacterianos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana , Humanos
4.
Int J Nanomedicine ; 17: 2505-2533, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35677678

RESUMEN

In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal , Hongos , Nanopartículas del Metal/química , Micología , Nanotecnología
5.
Curr Med Chem ; 29(15): 2632-2651, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34823458

RESUMEN

Autism is a neurodevelopmental disorder belonging to the autism spectrum disorder (ASD). In ASDs, the individuals show substantial impairments in social communication, repetitive behaviours, and sensory behaviours deficits in the early stages of their life. Globally, the prevalence of autism is estimated to be less than 1%, especially in high- -income countries. In recent decades, there has been a drastic increase in the incidence of ASD, which has put ASD into the category of epidemics. Presently, two US Food and Drug Administration-approved drugs, aripiprazole and risperidone, are used to treat symptoms of agitation and irritability in autistic children. However, to date, no medication has been found to treat the core symptoms of ASD. The adverse side effects of conventional medicine and limited treatment options have led families of autistic children to turn to complementary and alternative medicine (CAM) treatments, which are perceived as relatively safe compared to conventional medicine. Recently N, N-dimethylglycine (DMG), a dietary supplement, has emerged as a useful supplement to improve the mental and physical state of children with ASD. The current review discusses ASD, the prevalence of ASD, the CAM approach, and the efficacy of CAM treatment in children with ASD. Moreover, it highlights the chemistry, pharmacological effect, and clinical studies of DMG, highlighting its potential for improving the lifestyle of children with ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/epidemiología , Niño , Humanos , Nutrientes , Sarcosina/análogos & derivados , Sarcosina/uso terapéutico
6.
Molecules ; 26(11)2021 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-34204121

RESUMEN

The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.


Asunto(s)
Bacterias/efectos de los fármacos , Frutas/química , Polifenoles/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Bacterias/metabolismo , Biopelículas/efectos de los fármacos , Microbiología de Alimentos , Conservantes de Alimentos/química , Conservantes de Alimentos/farmacología , Humanos , Nanopartículas , Extractos Vegetales/química , Extractos Vegetales/farmacología , Polifenoles/química
7.
Biomolecules ; 11(3)2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809763

RESUMEN

Prebiotics are either natural or synthetic non-digestible (non-)carbohydrate substances that boost the proliferation of gut microbes. Undigested fructooligosaccharides in the large intestine are utilised by the beneficial microorganisms for the synthesis of short-chain fatty acids for their own growth. Although various food products are now recognized as having prebiotic properties, several others, such as almonds, artichoke, barley, chia seeds, chicory, dandelion greens, flaxseeds, garlic, and oats, are being explored and used as functional foods. Considering the benefits of these prebiotics in mineral absorption, metabolite production, gut microbiota modulation, and in various diseases such as diabetes, allergy, metabolic disorders, and necrotising enterocolitis, increasing attention has been focused on their applications in both food and pharmaceutical industries, although some of these food products are actually used as food supplements. This review aims to highlight the potential and need of these prebiotics in the diet and also discusses data related to the distinct types, sources, modes of action, and health benefits.


Asunto(s)
Enfermedad , Plantas/química , Prebióticos , Animales , Fibras de la Dieta , Microbioma Gastrointestinal , Salud , Humanos
8.
J Fungi (Basel) ; 6(4)2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33317038

RESUMEN

Research and innovation in nanoparticles (NPs) synthesis derived from biomaterials have gained much attention due to their unique characteristics, such as low-cost, easy synthesis methods, high water solubility, and eco-friendly nature. NPs derived from macrofungi, including various mushroom species, such as Agaricus bisporus, Pleurotus spp., Lentinus spp., and Ganoderma spp. are well known to possess high nutritional, immune-modulatory, antimicrobial (antibacterial, antifungal and antiviral), antioxidant, and anticancerous properties. Fungi have intracellular metal uptake ability and maximum wall binding capacity; because of which, they have high metal tolerance and bioaccumulation ability. Primarily, two methods have been comprehended in the literature to synthesize metal NPs from macrofungi, i.e., the intracellular method, which refers to NP synthesis inside fungal cells by transportation of ions in the presence of enzymes; and the extracellular method, which refers to the treatment of fungal biomolecules aqueous filtrate with a metal precursor. Pleurotus derived metal NPs are known to inhibit the growth of numerous foodborne pathogenic bacteria and fungi. To the best of our knowledge, there is no such review article reported in the literature describing the synthesis and complete application and mechanism of NPs derived from macrofungi. Herein, we intend to summarize the progressive research on macrofungi derived NPs regarding their synthesis as well as applications in the area of antimicrobial (antibacterial & antifungal), anticancer, antioxidant, catalytic and food preservation. Additionally, the challenges associated with NPs synthesis will also be discussed.

9.
Int J Mol Sci ; 21(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261095

RESUMEN

The use of metallic nanoparticles in engineering and biomedicine disciplines has gained considerable attention. Scientists are exploring new synthesis protocols of these substances considering their small size and lucrative antimicrobial potential. Among the most economical techniques of synthesis of metallic nanoparticles via chemical routes, which includes the use of chemicals as metal reducing agents, is considered to generate nanoparticles possessing toxicity and biological risk. This limitation of chemically synthesized nanoparticles has engendered the exploration for the ecofriendly synthesis process. Biological or green synthesis approaches have emerged as an effective solution to address the limitations of conventionally synthesized nanoparticles. Nanoparticles synthesized via biological entities obtained from plant extracts exhibit superior effect in comparison to chemical methods. Recently, conifer extracts have been found to be effective in synthesizing metallic nanoparticles through a highly regulated process. The current review highlights the importance of conifers and its extracts in synthesis of metallic nanoparticles. It also discusses the different applications of the conifer extract mediated metallic nanoparticles.


Asunto(s)
Tecnología Química Verde , Nanopartículas del Metal/química , Tracheophyta/química , Antiinfecciosos/farmacología , Antioxidantes/farmacología
10.
Nutrients ; 12(10)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33007945

RESUMEN

Ageing is an enigmatic and progressive biological process which undermines the normal functions of living organisms with time. Ageing has been conspicuously linked to dietary habits, whereby dietary restrictions and antioxidants play a substantial role in slowing the ageing process. Oxygen is an essential molecule that sustains human life on earth and is involved in the synthesis of reactive oxygen species (ROS) that pose certain health complications. The ROS are believed to be a significant factor in the progression of ageing. A robust lifestyle and healthy food, containing dietary antioxidants, are essential for improving the overall livelihood and decelerating the ageing process. Dietary antioxidants such as adaptogens, anthocyanins, vitamins A/D/C/E and isoflavones slow the ageing phenomena by reducing ROS production in the cells, thereby improving the life span of living organisms. This review highlights the manifestations of ageing, theories associated with ageing and the importance of diet management in ageing. It also discusses the available functional foods as well as nutraceuticals with anti-ageing potential.


Asunto(s)
Envejecimiento/fisiología , Antioxidantes/administración & dosificación , Dieta Saludable/métodos , Suplementos Dietéticos , Plantas Comestibles , Alimentos Funcionales , Humanos , Longevidad , Estrés Oxidativo , Especies Reactivas de Oxígeno/análisis
11.
Nanomaterials (Basel) ; 10(7)2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32650608

RESUMEN

Numerous abiotic stresses trigger the overproduction of reactive oxygen species (ROS) that are highly toxic and reactive. These ROS are known to cause damage to carbohydrates, DNA, lipids and proteins, and build the oxidative stress and results in the induction of various diseases. To resolve this issue, antioxidants molecules have gained significant attention to scavenge these free radicals and ROS. However, poor absorption ability, difficulty in crossing the cell membranes and degradation of these antioxidants during delivery are the few challenges associated with both natural and synthetic antioxidants that limit their bioavailability. Moreover, the use of nanoparticles as an antioxidant is overlooked, and is limited to a few nanomaterials. To address these issues, antioxidant functionalized nanoparticles derived from various biological origin have emerged as an important alternative, because of properties like biocompatibility, high stability and targeted delivery. Algae, bacteria, fungi, lichens and plants are known as the producers of diverse secondary metabolites and phenolic compounds with extraordinary antioxidant properties. Hence, these compounds could be used in amalgamation with biogenic derived nanoparticles (NPs) for better antioxidant potential. This review intends to increase our knowledge about the antioxidant functionalized nanoparticles and the mechanism by which antioxidants empower nanoparticles to combat oxidative stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...