Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Spectrosc ; : 37028231210885, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964538

RESUMEN

In this work, we derive a simple method for calibrating Raman bandwidths for the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument onboard NASA's Perseverance rover. Raman bandwidths and shapes reported by an instrument contain contributions from both the intrinsic Raman band (IRB) and instrumental artifacts. To directly correlate bandwidth to sample properties and to compare bandwidths across instruments, the IRB width needs to be separated from instrumental effects. Here, we use the ubiquitous bandwidth calibration method of modeling the observed Raman bands as a convolution of a Lorentzian IRB and a Gaussian instrument slit function. Using calibration target data, we calculate that SHERLOC has a slit function width of 34.1 cm-1. With a measure of the instrument slit function, we can deconvolve the IRB from the observed band, providing the width of the Raman band unobscured by instrumental artifact. We present the correlation between observed Raman bandwidth and intrinsic Raman bandwidth in table form for the quick estimation of SHERLOC Raman intrinsic bandwidths. We discuss the limitations of using this model to calibrate Raman bandwidth and derive a quantitative method for calculating the errors associated with the calibration. We demonstrate the utility of this method of bandwidth calibration by examining the intrinsic bandwidths of SHERLOC sulfate spectra and by modeling the SHERLOC spectrum of olivine.

2.
Nature ; 619(7971): 724-732, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37438522

RESUMEN

The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.

3.
Astrobiology ; 23(1): 1-23, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367974

RESUMEN

We report deep ultraviolet (DUV) Raman and Fluorescence spectra obtained on a SHERLOC (Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals) analog instrument for 51 pure organic compounds, including 5 carboxylic acids, 10 polycyclic aromatic hydrocarbons, 24 amino acids, 6 nucleobases, and 6 different grades of macromolecular carbon from humic acid to graphite. Organic mixtures were not investigated. We discuss how the DUV fluorescence and Raman spectra exhibited by different organic compounds allow for detection, classification, and identification of organics by SHERLOC. We find that 1- and 2-ring aromatic compounds produce detectable fluorescence within SHERLOC's spectral range (250-355 nm), but fluorescence spectra are not unique enough to enable easy identification of particular compounds. However, both aromatic and aliphatic compounds can be identified by their Raman spectra, with the number of Raman peaks and their positions being highly specific to chemical structure, within SHERLOC's reported spectral uncertainty of ±5 cm-1. For compounds that are not in the Library, classification is possible by comparing the general number and position of dominant Raman peaks with trends for different kinds of organic compounds.


Asunto(s)
Grafito , Marte , Fluorescencia , Compuestos Orgánicos , Ácidos Carboxílicos , Carbono , Espectrometría Raman
4.
Science ; 378(6624): 1105-1110, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36417498

RESUMEN

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times. Reactions with liquid water formed carbonates in an olivine-rich igneous rock. A sulfate-perchlorate mixture is present in the rocks, which probably formed by later modifications of the rocks by brine. Fluorescence signatures consistent with aromatic organic compounds occur throughout these rocks and are preserved in minerals related to both aqueous environments.

5.
Astrobiology ; 22(9): 1143-1163, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35862422

RESUMEN

The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and µXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Planeta Tierra , Exobiología/métodos , Minerales/análisis
6.
Sensors (Basel) ; 21(11)2021 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-34198916

RESUMEN

Environmental monitoring of aquatic systems is the key requirement for sustainable environmental protection and future drinking water supply. The quality of water resources depends on the effectiveness of water treatment plants to reduce chemical pollutants, such as nitrates, pharmaceuticals, or microplastics. Changes in water quality can vary rapidly and must be monitored in real-time, enabling immediate action. In this study, we test the feasibility of a deep UV Raman spectrometer for the detection of nitrate/nitrite, selected pharmaceuticals and the most widespread microplastic polymers. Software utilizing artificial intelligence, such as a convolutional neural network, is trained for recognizing typical spectral patterns of individual pollutants, once processed by mathematical filters and machine learning algorithms. The results of an initial experimental study show that nitrates and nitrites can be detected and quantified. The detection of nitrates poses some challenges due to the noise-to-signal ratio and background and related noise due to water or other materials. Selected pharmaceutical substances could be detected via Raman spectroscopy, but not at concentrations in the µg/l or ng/l range. Microplastic particles are non-soluble substances and can be detected and identified, but the measurements suffer from the heterogeneous distribution of the microparticles in flow experiments.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Inteligencia Artificial , Monitoreo del Ambiente , Rayos Láser , Espectrometría Raman , Contaminantes Químicos del Agua/análisis
7.
Appl Spectrosc ; 75(7): 763-773, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33876994

RESUMEN

We describe the wavelength calibration of the spectrometer for the scanning of habitable environments with Raman and luminescence for organics and chemicals (SHERLOC) instrument onboard NASA's Perseverance Rover. SHERLOC utilizes deep ultraviolet Raman and fluorescence (DUV R/F) spectroscopy to enable analysis of samples from the Martian surface. SHERLOC employs a 248.6 nm deep ultraviolet laser to generate Raman-scattered photons and native fluorescence emission photons from near-surface material to detect and classify chemical and mineralogical compositions. The collected photons are focused on a charge-coupled device and the data are returned to Earth for analysis. The compact DUV R/F spectrometer has a spectral range from 249.9 nm to 353.6 nm (∼200 cm-1 to 12 000 cm-1) (with a spectral resolution of 0.296 nm (∼40 cm-1)). The compact spectrometer uses a custom design to project a high-resolution Raman spectrum and a low-resolution fluorescence spectrum on a single charge-coupled device. The natural spectral separation enabled by deep ultraviolet excitation enables wavelength separation of the Raman/fluorescence spectra. The SHERLOC spectrometer was designed to optimize the resolution of the Raman spectral region and the wavelength range of the fluorescence region. The resulting illumination on the charge-coupled device is curved, requiring a segmented, nonlinear wavelength calibration in order to understand the mineralogy and chemistry of Martian materials.

8.
Astrobiology ; 21(5): 511-525, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33493410

RESUMEN

The search for organic biosignatures on Mars will depend on finding material protected from the destructive ambient radiation. Solar ultraviolet can induce photochemical degradation of organic compounds, but certain clays have been shown to preserve organic material. We examine how the SHERLOC instrument on the upcoming Mars 2020 mission will use deep-ultraviolet (UV) (248.6 nm) Raman and fluorescence spectroscopy to detect a plausible biosignature of adenosine 5'-monophosphate (AMP) adsorbed onto Ca-montmorillonite clay. We found that the spectral signature of AMP is not altered by adsorption in the clay matrix but does change with prolonged exposure to the UV laser over dosages equivalent to 0.2-6 sols of ambient martian UV. For pure AMP, UV exposure leads to breaking of the aromatic adenine unit, but in the presence of clay the degradation is limited to minor alteration with new Raman peaks and increased fluorescence consistent with formation of 2-hydroxyadenosine, while 1 wt % Mg perchlorate increases the rate of degradation. Our results confirm that clays are effective preservers of organic material and should be considered high-value targets, but that pristine biosignatures may be altered within 1 sol of martian UV exposure, with implications for Mars 2020 science operations and sample caching.


Asunto(s)
Medio Ambiente Extraterrestre , Marte , Adenosina Monofosfato , Percloratos , Espectrometría de Fluorescencia , Rayos Ultravioleta
9.
Front Microbiol ; 11: 536535, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329414

RESUMEN

The microbial ecology of the deep biosphere is difficult to characterize, owing in part to sampling challenges and poorly understood response mechanisms to environmental change. Pre-drilled wells, including oil wells or boreholes, offer convenient access, but sampling is frequently limited to the water alone, which may provide only a partial view of the native diversity. Mineral heterogeneity demonstrably affects colonization by deep biosphere microorganisms, but the connections between the mineral-associated and planktonic communities remain unclear. To understand the substrate effects on microbial colonization and the community response to changes in organic carbon, we conducted an 18-month series of in situ experiments in a warm (57°C), anoxic, fractured carbonate aquifer at 752 m depth using replicate open, screened cartridges containing different solid substrates, with a proteinaceous organic matter perturbation halfway through this series. Samples from these cartridges were analyzed microscopically and by Illumina (iTag) 16S rRNA gene libraries to characterize changes in mineralogy and the diversity of the colonizing microbial community. The substrate-attached and planktonic communities were significantly different in our data, with some taxa (e.g., Candidate Division KB-1) rare or undetectable in the first fraction and abundant in the other. The substrate-attached community composition also varied significantly with mineralogy, such as with two Rhodocyclaceae OTUs, one of which was abundant on carbonate minerals and the other on silicic substrates. Secondary sulfide mineral formation, including iron sulfide framboids, was observed on two sets of incubated carbonates. Notably, microorganisms were attached to the framboids, which were correlated with abundant Sulfurovum and Desulfotomaculum sp. sequences in our analysis. Upon organic matter perturbation, mineral-associated microbial diversity differences were temporarily masked by the dominance of putative heterotrophic taxa in all samples, including OTUs identified as Caulobacter, Methyloversatilis, and Pseudomonas. Subsequent experimental deployments included a methanogen-dominated stage (Methanobacteriales and Methanomicrobiales) 6 months after the perturbation and a return to an assemblage similar to the pre-perturbation community after 9 months. Substrate-associated community differences were again significant within these subsequent phases, however, demonstrating the value of in situ time course experiments to capture a fraction of the microbial assemblage that is frequently difficult to observe in pre-drilled wells.

10.
Astrobiology ; 20(12): 1427-1449, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33052709

RESUMEN

A prototype rover carrying an astrobiology payload was developed and deployed at analog field sites to mature generalized system architectures capable of searching for biosignatures in extreme terrain across the Solar System. Specifically, the four-legged Limbed Excursion Mechanical Utility Robot (LEMUR) 3 climbing robot with microspine grippers carried three instruments: a micro-X-ray fluorescence instrument based on the Mars 2020 mission's Planetary Instrument for X-ray Lithochemistry provided elemental chemistry; a deep-ultraviolet fluorescence instrument based on Mars 2020's Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals mapped organics in bacterial communities on opaque substrates; and a near-infrared acousto-optic tunable filter-based point spectrometer identified minerals and organics in the 1.6-3.6 µm range. The rover also carried a light detection and ranging and a color camera for both science and navigation. Combined, this payload detects astrobiologically important classes of rock components (elements, minerals, and organics) in extreme terrain, which, as demonstrated in this work, can reveal a correlation between textural biosignatures and the organics or elements expected to preserve them in a habitable environment. Across >10 field tests, milestones were achieved in instrument operations, autonomous mobility in extreme terrain, and system integration that can inform future planetary science mission architectures. Contributions include (1) system-level demonstration of mock missions to the vertical exposures of Mars lava tube caves and Mars canyon walls, (2) demonstration of multi-instrument integration into a confocal arrangement with surface scanning capabilities, and (3) demonstration of automated focus stacking algorithms for improved signal-to-noise ratios and reduced operation time.


Asunto(s)
Exobiología/instrumentación , Marte , Robótica , Cuevas , Medio Ambiente Extraterrestre , Minerales
11.
Astrobiology ; 20(10): 1185-1211, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32700965

RESUMEN

We used a deep-ultraviolet fluorescence mapping spectrometer, coupled to a drill system, to scan from the surface to 105 m depth into the Greenland ice sheet. The scan included firn and glacial ice and demonstrated that the instrument is able to determine small (mm) and large (cm) scale regions of organic matter concentration and discriminate spectral types of organic matter at high resolution. Both a linear point cloud scanning mode and a raster mapping mode were used to detect and localize microbial and organic matter "hotspots" embedded in the ice. Our instrument revealed diverse spectral signatures. Most hotspots were <20 mm in diameter, clearly isolated from other hotspots, and distributed stochastically; there was no evidence of layering in the ice at the fine scales examined (100 µm per pixel). The spectral signatures were consistent with organic matter fluorescence from microbes, lignins, fused-ring aromatic molecules, including polycyclic aromatic hydrocarbons, and biologically derived materials such as fulvic acids. In situ detection of organic matter hotspots in ice prevents loss of spatial information and signal dilution when compared with traditional bulk analysis of ice core meltwaters. Our methodology could be useful for detecting microbial and organic hotspots in terrestrial icy environments and on future missions to the Ocean Worlds of our Solar System.


Asunto(s)
Cubierta de Hielo , Sistema Solar , Groenlandia , Cubierta de Hielo/química , Cubierta de Hielo/microbiología
12.
Astrobiology ; 20(3): 307-326, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32125196

RESUMEN

The molecules feeding life's emergence are thought to have been provided through the hydrothermal interactions of convecting carbonic ocean waters with minerals comprising the early Hadean oceanic crust. Few laboratory experiments have simulated ancient hydrothermal conditions to test this conjecture. We used the JPL hydrothermal flow reactor to investigate CO2 reduction in simulated ancient alkaline convective systems over 3 days (T = 120°C, P = 100 bar, pH = 11). H2-rich hydrothermal simulant and CO2-rich ocean simulant solutions were periodically driven in 4-h cycles through synthetic mafic and ultramafic substrates and Fe>Ni sulfides. The resulting reductants included micromoles of HS- and formate accompanied possibly by micromoles of acetate and intermittent minor bursts of methane as ascertained by isotopic labeling. The formate concentrations directly correlated with the CO2 input as well as with millimoles of Mg2+ ions, whereas the acetate did not. Also, tens of micromoles of methane were drawn continuously from the reactor materials during what appeared to be the onset of serpentinization. These results support the hypothesis that formate may have been delivered directly to a branch of an emerging acetyl coenzyme-A pathway, thus obviating the need for the very first hydrogenation of CO2 to be made in a hydrothermal mound. Another feed to early metabolism could have been methane, likely mostly leached from primary CH4 present in the original Hadean crust or emanating from the mantle. That a small volume of methane was produced sporadically from the 13CO2-feed, perhaps from transient occlusions, echoes the mixed results and interpretations from other laboratories. As serpentinization and hydrothermal leaching can occur wherever an ocean convects within anhydrous olivine- and sulfide-rich crust, these results may be generalized to other wet rocky planets and moons in our solar system and beyond.


Asunto(s)
Respiraderos Hidrotermales/química , Compuestos de Hierro/metabolismo , Compuestos de Magnesio/metabolismo , Origen de la Vida , Agua de Mar/química , Silicatos/metabolismo , Acetilcoenzima A/metabolismo , Dióxido de Carbono/química , Planeta Tierra , Hidrógeno/química , Compuestos de Hierro/química , Compuestos de Magnesio/química , Metano/química , Océanos y Mares , Silicatos/química
13.
Appl Spectrosc ; 74(6): 684-700, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31775517

RESUMEN

Raman spectroscopy is an invaluable technique for identifying compounds by the unique pattern of their molecular vibrations and is capable of quantifying the individual concentrations of those compounds provided that certain parameters about the sample and instrument are known. We demonstrate the development of an optical model to describe the intensity distribution of incident laser photons as they pass through the sample volume, determine the limitations of that volume that may be detected by the spectrometer optics, and account for light absorption by molecules within the sample in order to predict the total Raman intensity that would be obtained from a given, uniform sample such as an aqueous solution. We show that the interplay between the shape and divergence of the laser beam, the position of the focal plane, and the dimensions of the spectrometer slit are essential to explaining experimentally observed trends in deep ultraviolet Raman intensities obtained from both planar and volumetric samples, including highly oriented pyrolytic graphite and binary mixtures of organic nucleotides. This model offers the capability to predict detection limits for organic compounds in different matrices based on the parameters of the spectrometer, and to define the upper/lower limits within which concentration can be reliably determined from Raman intensity for such samples. We discuss the potential to quantify more complex samples, including as solid phase mixtures of organics and minerals, that are investigated by the unique instrument parameters of the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) investigation on the upcoming Mars 2020 rover mission.

14.
Appl Spectrosc ; 73(9): 1019-1027, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31342767

RESUMEN

Cosmic rays can degrade Raman hyperspectral images by introducing high-intensity noise to spectra, obfuscating the results of downstream analyses. We describe a novel method to detect cosmic rays in deep ultraviolet Raman hyperspectral data sets adapted from existing cosmic ray removal methods applied to astronomical images. This method identifies cosmic rays as outliers in the distribution of intensity values in each wavelength channel. In some cases, this algorithm fails to identify cosmic rays in data sets with high inter-spectral variance, uncorrected baseline drift, or few spectra. However, this method effectively identifies cosmic rays in spatially uncorrelated hyperspectral data sets more effectively than other cosmic ray rejection methods and can potentially be employed in commercial and robotic Raman systems to identify cosmic rays semi-autonomously.

15.
Front Microbiol ; 10: 679, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156562

RESUMEN

The next NASA-led Mars mission (Mars 2020) will carry a suite of instrumentation dedicated to investigating Martian history and the in situ detection of potential biosignatures. SHERLOC, a deep UV Raman/Fluorescence spectrometer has the ability to detect and map the distribution of many organic compounds, including the aromatic molecules that are fundamental building blocks of life on Earth, at concentrations down to 1 ppm. The mere presence of organic compounds is not a biosignature: there is widespread distribution of reduced organic molecules in the Solar System. Life utilizes a select few of these molecules creating conspicuous enrichments of specific molecules that deviate from the distribution expected from purely abiotic processes. The detection of far from equilibrium concentrations of a specific subset of organic molecules, such as those uniquely enriched by biological processes, would comprise a universal biosignature independent of specific terrestrial biochemistry. The detectability and suitability of a small subset of organic molecules to adequately describe a living system is explored using the bacterium Escherichia coli as a model organism. The DUV Raman spectra of E. coli cells are dominated by the vibrational modes of the nucleobases adenine, guanine, cytosine, and thymine, and the aromatic amino acids tyrosine, tryptophan, and phenylalanine. We demonstrate that not only does the deep ultraviolet (DUV) Raman spectrum of E. coli reflect a distinct concentration of specific organic molecules, but that a sufficient molecular complexity is required to deconvolute the cellular spectrum. Furthermore, a linear combination of the DUV resonant compounds is insufficient to fully describe the cellular spectrum. The residual in the cellular spectrum indicates that DUV Raman spectroscopy enables differentiating between the presence of biomolecules and the complex uniquely biological organization and arrangements of these molecules in living systems. This study demonstrates the ability of DUV Raman spectroscopy to interrogate a complex biological system represented in a living cell, and differentiate between organic detection and a series of Raman features that derive from the molecular complexity inherent to life constituting a biosignature.

16.
Astrobiology ; 19(6): 771-784, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30822105

RESUMEN

Terrestrial icy environments have been found to preserve organic material and contain habitable niches for microbial life. The cryosphere of other planetary bodies may therefore also serve as an accessible location to search for signs of life. The Wireline Analysis Tool for the Subsurface Observation of Northern ice sheets (WATSON) is a compact deep-UV fluorescence spectrometer for nondestructive ice borehole analysis and spatial mapping of organics and microbes, intended to address the heterogeneity and low bulk densities of organics and microbial cells in ice. WATSON can be either operated standalone or integrated into a wireline drilling system. We present an overview of the WATSON instrument and results from laboratory experiments intended to determine (i) the sensitivity of WATSON to organic material in a water ice matrix and (ii) the ability to detect organic material under various thicknesses of ice. The results of these experiments show that in bubbled ice the instrument has a depth of penetration of 10 mm and a detection limit of fewer than 300 cells. WATSON incorporates a scanning system that can map the distribution of organics and microbes over a 75 by 25 mm area. WATSON demonstrates a sensitive fluorescence mapping technique for organic and microbial detection in icy environments including terrestrial glaciers and ice sheets, and planetary surfaces including Europa, Enceladus, or the martian polar caps.


Asunto(s)
Exobiología/métodos , Medio Ambiente Extraterrestre/química , Cubierta de Hielo/química , Compuestos Orgánicos/análisis , Júpiter , Marte , Espectrometría de Fluorescencia/métodos , Rayos Ultravioleta
17.
Front Microbiol ; 6: 1260, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617595

RESUMEN

The deep biosphere is a major frontier to science. Recent studies have shown the presence and activity of cells in deep marine sediments and in the continental deep biosphere. Volcanic lavas in the deep ocean subsurface, through which substantial fluid flow occurs, present another potentially massive deep biosphere. We present results from the deployment of a novel in situ logging tool designed to detect microbial life harbored in a deep, native, borehole environment within igneous oceanic crust, using deep ultraviolet native fluorescence spectroscopy. Results demonstrate the predominance of microbial-like signatures within the borehole environment, with densities in the range of 10(5) cells/mL. Based on transport and flux models, we estimate that such a concentration of microbial cells could not be supported by transport through the crust, suggesting in situ growth of these communities.

18.
Astrobiology ; 14(4): 308-43, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24697642

RESUMEN

This paper presents a reformulation of the submarine alkaline hydrothermal theory for the emergence of life in response to recent experimental findings. The theory views life, like other self-organizing systems in the Universe, as an inevitable outcome of particular disequilibria. In this case, the disequilibria were two: (1) in redox potential, between hydrogen plus methane with the circuit-completing electron acceptors such as nitrite, nitrate, ferric iron, and carbon dioxide, and (2) in pH gradient between an acidulous external ocean and an alkaline hydrothermal fluid. Both CO2 and CH4 were equally the ultimate sources of organic carbon, and the metal sulfides and oxyhydroxides acted as protoenzymatic catalysts. The realization, now 50 years old, that membrane-spanning gradients, rather than organic intermediates, play a vital role in life's operations calls into question the idea of "prebiotic chemistry." It informs our own suggestion that experimentation should look to the kind of nanoengines that must have been the precursors to molecular motors-such as pyrophosphate synthetase and the like driven by these gradients-that make life work. It is these putative free energy or disequilibria converters, presumably constructed from minerals comprising the earliest inorganic membranes, that, as obstacles to vectorial ionic flows, present themselves as the candidates for future experiments. Key Words: Methanotrophy-Origin of life. Astrobiology 14, 308-343. The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. (Fuchs, 2011 ) Further significant progress with the tightly membrane-bound H(+)-PPase family should lead to an increased insight into basic requirements for the biological transport of protons through membranes and its coupling to phosphorylation. (Baltscheffsky et al., 1999 ).


Asunto(s)
Exobiología , Respiraderos Hidrotermales/química , Origen de la Vida , Ciclo del Carbono , Planeta Tierra , Concentración de Iones de Hidrógeno , Pirofosfatasa Inorgánica/metabolismo , Oxidación-Reducción
19.
Astrobiology ; 13(7): 637-46, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23848498

RESUMEN

If life ever evolved on the surface of Mars, it is unlikely that it would still survive there today, but as Mars evolved from a wet planet to an arid one, the subsurface environment may have presented a refuge from increasingly hostile surface conditions. Since the last glacial maximum, the Mojave Desert has experienced a similar shift from a wet to a dry environment, giving us the opportunity to study here on Earth how subsurface ecosystems in an arid environment adapt to increasingly barren surface conditions. In this paper, we advocate studying the vadose zone ecosystem of the Mojave Desert as an analogue for possible subsurface biospheres on Mars. We also describe several examples of Mars-like terrain found in the Mojave region and discuss ecological insights that might be gained by a thorough examination of the vadose zone in these specific terrains. Examples described include distributary fans (deltas, alluvial fans, etc.), paleosols overlain by basaltic lava flows, and evaporite deposits.


Asunto(s)
Vida , Marte , Ecosistema
20.
Astrobiology ; 11(10): 933-50, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22111762

RESUMEN

The concept that life emerged where alkaline hydrogen-bearing submarine hot springs exhaled into the most ancient acidulous ocean was used as a working hypothesis to investigate the nature of precipitate membranes. Alkaline solutions at 25-70°C and pH between 8 and 12, bearing HS(-)±silicate, were injected slowly into visi-jars containing ferrous chloride to partially simulate the early ocean on this or any other wet and icy, geologically active rocky world. Dependent on pH and sulfide content, fine tubular chimneys and geodal bubbles were generated with semipermeable walls 4-100 µm thick that comprised radial platelets of nanometric mackinawite [FeS]±ferrous hydroxide [∼Fe(OH)(2)], accompanied by silica and, at the higher temperature, greigite [Fe(3)S(4)]. Within the chimney walls, these platelets define a myriad of micropores. The interior walls of the chimneys host iron sulfide framboids, while, in cases where the alkaline solution has a pH>11 or relatively low sulfide content, their exteriors exhibit radial flanges with a spacing of ∼4 µm that comprise microdendrites of ferrous hydroxide. We speculate that this pattern results from outward and inward radial flow through the chimney walls. The outer Fe(OH)(2) flanges perhaps precipitate where the highly alkaline flow meets the ambient ferrous iron-bearing fluid, while the intervening troughs signal where the acidulous iron-bearing solutions could gain access to the sulfidic and alkaline interior of the chimneys, thereby leading to the precipitation of the framboids. Addition of soluble pentameric peptides enhances membrane durability and accentuates the crenulations on the chimney exteriors. These dynamic patterns may have implications for acid-base catalysis and the natural proton motive force acting through the matrix of the porous inorganic membrane. Thus, within such membranes, steep redox and pH gradients would bear across the nanometric platelets and separate the two counter-flowing solutions, a condition that may have led to the onset of an autotrophic metabolism through the reduction of carbon dioxide.


Asunto(s)
Respiraderos Hidrotermales , Compuestos de Hierro/química , Concentración de Iones de Hidrógeno , Péptidos/química , Dióxido de Silicio/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...