Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 96(10): 4005-4012, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38415592

RESUMEN

We demonstrate the synthesis of biogenic supported silver spiked star architectures and their application to increase the electromagnetic field intensity at its tips that enhance plasmon-coupled emission. Tecoma stans floral extract has been used to synthesize silver nanocubes and spiked stars. We observe ∼445-fold and ∼680-fold enhancements in spacer and cavity configurations, respectively, in the SPCE platform. The hotspot intensity and Purcell factor are evaluated by carrying out finite-difference time-domain (FDTD) simulations. Time-based studies are presented to modulate the sharpness of the edges wherein an increase in the tip sharpness with the increase in reaction time up to 5 h is observed. The unique morphology of the silver architectures allowed us to utilize them in biosensing application. A SPCE-based fluoroimmunoassay was performed, achieving a 1.9 pg/mL limit of detection of TNF-α cytokine. This combination of anisotropic architectures, SPCE and immunoassay prove to be a powerful platform for the ultrasensitive detection of biomarkers in surface-bound assays.


Asunto(s)
Bignoniaceae , Resonancia por Plasmón de Superficie , Plata , Fluoroinmunoensayo , Extractos Vegetales
2.
Nanomaterials (Basel) ; 14(1)2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38202566

RESUMEN

Point-of-care (POC) diagnostic platforms are globally employed in modern smart technologies to detect events or changes in the analyte concentration and provide qualitative and quantitative information in biosensing. Surface plasmon-coupled emission (SPCE) technology has emerged as an effective POC diagnostic tool for developing robust biosensing frameworks. The simplicity, robustness and relevance of the technology has attracted researchers in physical, chemical and biological milieu on account of its unique attributes such as high specificity, sensitivity, low background noise, highly polarized, sharply directional, excellent spectral resolution capabilities. In the past decade, numerous nano-fabrication methods have been developed for augmenting the performance of the conventional SPCE technology. Among them the utility of plasmonic gold nanoparticles (AuNPs) has enabled the demonstration of plethora of reliable biosensing platforms. Here, we review the nano-engineering and biosensing applications of AuNPs based on the shape, hollow morphology, metal-dielectric, nano-assembly and heterometallic nanohybrids under optical as well as biosensing competencies. The current review emphasizes the recent past and evaluates the latest advancements in the field to comprehend the futuristic scope and perspectives of exploiting Au nano-antennas for plasmonic hotspot generation in SPCE technology.

3.
Langmuir ; 39(22): 7939-7957, 2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37228180

RESUMEN

Photoplasmonic platforms are being demonstrated as excellent means for bridging nanochemistry and biosensing approaches at advanced interfaces, thereby augmenting the sensitivity and quantification of the desired analytes. Although resonantly coupled electromagnetic waves at the surface plasmon-coupled emission (SPCE) interface are investigated with myriad nanomaterials in order to boost the detection limits, rhodamine moieties are ubiquitously used as SPCE reporter molecules in spite of their well-known limitations. In order to overcome this constraint, in this work, a benzoxazolium-based fluorescent molecule, (E)-2-(4-(dimethylamino)styryl)-3-methylbenzo[d]oxazol-3-ium iodide (DSBO), was synthesized to selectively detect the cyanide (CN-) ions in water samples. To this end, the sensitivity of the fabricated SPCE substrates is tested in spacer, cavity, and extended cavity nanointerfaces to rationalize the configurational robustness. The performance of the sensor is further improved with the careful engineering of gold (Au)-graphene oxide (GO) cryosoret nanoassemblies fabricated via an adiabatic cooling technology. The unique dequenching (turn-on) of the quenched (turn-off) fluorescent signal is demonstrated with the hybridized metal-π plasmon synergistic coupling in the nanovoids and nanocavities assisting delocalized Bragg and localized Mie plasmons. The spectro-plasmonic analysis yielded highly directional, polarized (>95%), and enhanced emission attributes with an attomolar limit of detection of 10 aM of CN- ions with high linearity (R2 = 0.996) and excellent reliability, in addition to an exceptional correlation with the theoretically obtained TFclac simulations. The CN- ion sensing is experimentally validated with the smartphone-based cost-effective SPCE detection technology to render the device amenable to resource-limited settings. We believe that the unique fluorophore-cryosoret nanoassemblage presented here encourages development of frugal, unconventional, and highly desirable strategies for the selective quantitation of environmentally and physiologically relevant analytes at trace concentrations for use in point-of-care diagnostics.

4.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36984981

RESUMEN

In the past decade, novel nano-engineering protocols have been actively synergized with fluorescence spectroscopic techniques to yield higher intensity from radiating dipoles, through the process termed plasmon-enhanced fluorescence (PEF). Consequently, the limit of detection of analytes of interest has been dramatically improvised on account of higher sensitivity rendered by augmented fluorescence signals. Recently, metallic thin films sustaining surface plasmon polaritons (SPPs) have been creatively hybridized with such PEF platforms to realize a substantial upsurge in the global collection efficiency in a judicious technology termed surface plasmon-coupled emission (SPCE). While the process parameters and conditions to realize optimum coupling efficiency between the radiating dipoles and the plasmon polaritons in SPCE framework have been extensively discussed, the utility of disruptive nano-engineering over the SPCE platform and analogous interfaces such as 'ferroplasmon-on-mirror (FPoM)' as well as an alternative technology termed 'photonic crystal-coupled emission (PCCE)' have been seldom reviewed. In light of these observations, in this focus review, the myriad nano-engineering protocols developed over the SPCE, FPoM and PCCE platform are succinctly captured, presenting an emphasis on the recently developed cryosoret nano-assembly technology for photo-plasmonic hotspot generation (first to fourth). These technologies and associated sensing platforms are expected to ameliorate the current biosensing modalities with better understanding of the biophysicochemical processes and related outcomes at advanced micro-nano-interfaces. This review is hence envisaged to present a broad overview of the latest developments in SPCE substrate design and development for interdisciplinary applications that are of relevance in environmental as well as biological heath monitoring.

5.
Micromachines (Basel) ; 14(3)2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36985075

RESUMEN

Nanoscale fluorescence emitters are efficient for measuring biomolecular interactions, but their utility for applications requiring single-unit observations is constrained by the need for large numerical aperture objectives, fluorescence intermittency, and poor photon collection efficiency resulting from omnidirectional emission. Photonic crystal (PC) structures hold promise to address the aforementioned challenges in fluorescence enhancement. In this review, we provide a broad overview of PCs by explaining their structures, design strategies, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-enhanced fluorescence-based biosensors incorporated with emerging technologies, including nucleic acids sensing, protein detection, and steroid monitoring. Finally, we discuss current challenges associated with PC-enhanced fluorescence and provide an outlook for fluorescence enhancement with photonic-plasmonics coupling and their promise for point-of-care biosensing as well monitoring analytes of biological and environmental relevance. The review presents the transdisciplinary applications of PCs in the broad arena of fluorescence spectroscopy with broad applications in photo-plasmonics, life science research, materials chemistry, cancer diagnostics, and internet of things.

6.
Langmuir ; 38(39): 12035-12049, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36122249

RESUMEN

Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.


Asunto(s)
Teléfono Celular , Sericinas , Oro , Sustancias Peligrosas , Ácido Mefenámico , Plata , Solventes , Resonancia por Plasmón de Superficie/métodos
7.
ACS Appl Mater Interfaces ; 13(14): 17046-17061, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33788532

RESUMEN

The quest for auxiliary plasmonic materials with lossless properties began in the past decade. In the current study, a unique plasmonic response is demonstrated from a stratified high refractive index (HRI)-graphene oxide (GO) and low refractive index (LRI)-polymethyl methacrylate (PMMA) multistack. Graphene oxide plasmon-coupled emission (GraPE) reveals the existence of strong surface states on the terminating layer of the photonic crystal (PC) framework. The chemical defects in GO thin film are conducive for unraveling plasmon hybridization within and across the multistack. We have achieved a unique assortment of metal-dielectric-metal (MDM) ensuing a zero-normal steering emission on account of solitons as well as directional GraPE. This has been theoretically established and experimentally demonstrated with a metal-free design. The angle-dependent reflectivity plots, electric field energy (EFI) profiles, and finite-difference time-domain (FDTD) analysis from the simulations strongly support plasmonic modes with giant Purcell factors (PFs). The architecture presented prospects for the replacement of metal-dependent MDM and surface plasmon-coupled emission (SPCE) technology with low cost, easy to fabricate, tunable soliton [graphene oxide plasmon-coupled soliton emission (GraSE)], and plasmon [GraPE] engineering for diverse biosensing applications. The superiority of the GraPE platform for achieving 1.95 pg mL-1 limit of detection of human IFN-γ is validated experimentally. A variety of nanoparticles encompassing metals, intermetallics, rare-earth, and low-dimensional carbon-plasmonic hybrids were used to comprehend PF and cavity hot-spot contribution resulting in 900-fold fluorescence emission enhancements on a lossless substrate, thereby opening the door to unique light-matter interactions for next-gen plasmonic and biomedical technologies.


Asunto(s)
Técnicas Biosensibles , Grafito/química , Metales/química , Resonancia por Plasmón de Superficie/métodos
8.
ACS Appl Mater Interfaces ; 12(30): 34323-34336, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32597162

RESUMEN

Although luminescence spectroscopy has been a promising sensing technology with widespread applications in point-of-care diagnostics and chem-bio detection, it fundamentally suffers from low signal collection efficiency, considerable background noise, poor photostability, and intrinsic omnidirectional emission properties. In this regard, surface plasmon-coupled emission, a versatile plasmon-enhanced detection platform with >50% signal collection efficiency, high directionality, and polarization has previously been explored to amplify the limit of detection of desired analytes. However, high Ohmic loss in metal-dependent plasmonic platforms has remained an inevitable challenge. Here, we develop a hybrid nanocavity interface on a template-free and loss-less photonic crystal-coupled emission (PCCE) platform by the quintessential integration of high refractive index dielectric Nd2O3 "Huygens sources" and sharp-edged silver nanoprisms (NPrs). While efficient forward light scattering characteristics of Nd2O3 nanorods (NRs) present 460-fold emission enhancements in PCCE, the tunable localized plasmon resonances of NPrs display high electromagnetic field confinement at sharp nanotips and protrusions, boosting the enhancements 947-fold. The judicious use of silver NPr (AgNPr) metal-Nd2O3 dielectric hybrid resonances in conjugation with surface-trapped Bloch surface waves of the one-dimensional photonic crystal (1DPhC) displayed unprecedented >1300-fold enhancements. The experimental results are validated by excellent correlations with numerical calculations. The multifold hotspots generated by zero and nonzero nanogaps between the coassembly of NPrs, NRs, and 1DPhCs are used for (i) determination of hyper and hypothyroidism levels through monitoring the concentration of iodide (I-) ions and (ii) single-molecule detection (zeptomolar) of the stress hormone, cortisol, through the synthesized cortisol-rhodamine B conjugate obtained using a simple esterification reaction.

9.
Langmuir ; 36(11): 2865-2876, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32159962

RESUMEN

Coupling of photons with molecular emitters in different nanocavities have resulted in transformative plasmonic applications. The rapidly expanding field of surface plasmon-coupled emission (SPCE) has synergistically employed subwavelength optical properties of localized surface plasmon resonance (LSPR) supported by nanoparticles (NPs) and propagating surface plasmon polaritons assisted by metal thin films for diagnostic and point-of-care analysis. Gold nanoparticles (AuNPs) significantly quench the molecular emission from fluorescent molecules (at close distances <5 nm). More often, complex strategies are employed for providing a spacer layer around the AuNPs to avoid direct contact with fluorescent molecules, thereby preventing quenching. In this study we demonstrate a rapid and facile strategy with the use of Au-decorated SiO2 NPs (AuSil), a metal (Au)-dielectric (SiO2) hybrid material for dequenching the otherwise quenched fluorescence emission from radiating dipoles and to realize 88-fold enhancement using the SPCE platform. Different loading of AuNPs were studied to tailor fluorescence emission enhancements in spacer, cavity, and extended (ext.) cavity nanointerfaces. We also present femtomolar detection of spermidine using this nanohybrid in a highly desirable ext. cavity interface. This interface serves as an efficient coupling configuration with dual benefits of spacer and cavity architectures that has been widely explored hitherto. The multifold hot-spots rendered by the AuSil nanohybrids assist in augmented electromagnetic (EM)-field intensity that can be captured using a smartphone-based SPCE platform presenting excellent reliability and reproducibility in spermidine detection.

10.
Phys Chem Chem Phys ; 20(8): 5983, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29431814

RESUMEN

Correction for 'The photocatalytic role of electrodeposited copper on pencil graphite' by Arathi P. J. et al., Phys. Chem. Chem. Phys., 2018, 20, 3430-3432.

11.
Phys Chem Chem Phys ; 20(5): 3430-3432, 2018 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-29340389

RESUMEN

We report on the ability of template-electrodeposited copper on pencil graphite as a novel and cost effective photocatalyst by considering the photodimerization of p-aminothiophenol (p-ATP) to 4,4'-dimercaptoazobenzene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...