Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(3)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36984515

RESUMEN

Background: Gastric cancer has been ranked the third leading cause of cancer death worldwide. Its detection at the early stage is difficult because patients mostly experience vague and non-specific symptoms in the early stages. Methods: The RNA-seq datasets of both gastric cancer and normal samples were considered and processed. The obtained differentially expressed genes were then subjected to functional enrichment analysis and pathway analysis. An implicit atomistic molecular dynamics simulation was executed on the selected protein receptor for 50 ns. The electrostatics, surface potential, radius of gyration, and macromolecular energy frustration landscape were computed. Results: We obtained a large number of DEGs; most of them were down-regulated, while few were up-regulated. A DAVID analysis showed that most of the genes were prominent in the KEGG and Reactome pathways. The most prominent GAD disease classes were cancer, metabolic, chemdependency, and infection. After an implicit atomistic molecular dynamics simulation, we observed that DLC1 is electrostatically optimized, stable, and has a reliable energy frustration landscape, with only a few maximum energy frustrations in the loop regions. It has a good functional and binding affinity mechanism. Conclusions: Our study revealed that DLC1 could be used as a potential druggable target for specific subsets of gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , RNA-Seq , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Perfilación de la Expresión Génica , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Supresoras de Tumor/genética
2.
Database (Oxford) ; 20212021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34585731

RESUMEN

The severe acute respiratory syndrome coronavirus 2 that causes coronavirus disease 2019 (COVID-19) disrupted the normal functioning throughout the world since early 2020 and it continues to do so. Nonetheless, the global pandemic was taken up as a challenge by researchers across the globe to discover an effective cure, either in the form of a drug or vaccine. This resulted in an unprecedented surge of experimental and computational data and publications, which often translated their findings in the form of databases (DBs) and tools. Over 160 such DBs and more than 80 software tools were developed, which are uncharacterized, unannotated, deployed at different universal resource locators and are challenging to reach out through a normal web search. Besides, most of the DBs/tools are present on preprints and are either underutilized or unrecognized because of their inability to make it to top Google search hits. Henceforth, there was a need to crawl and characterize these DBs and create a compendium for easy referencing. The current article is one such concerted effort in this direction to create a COVID-19 resource compendium (COVIDium) that would facilitate the researchers to find suitable DBs and tools for their research studies. COVIDium tries to classify the DBs and tools into 11 broad categories for quick navigation. It also provides end-users some generic hit terms to filter the DB entries for quick access to the resources. Additionally, the DB provides Tracker Dashboard, Neuro Resources, references to COVID-19 datasets and protein-protein interactions. This compendium will be periodically updated to accommodate new resources. Database URL: The COVIDium is accessible through http://kraza.in/covidium/.


Asunto(s)
COVID-19 , Bases de Datos Factuales , Programas Informáticos , Humanos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA