Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Nutr ; 10: 1215873, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37720376

RESUMEN

Humans are constantly facing multiple health challenges from both communicable and non-communicable diseases that significantly affect their health. Additionally, drug resistance or failure has made the situation even worse and poses serious challenges for researchers to develop new drugs. Hence, to address these problems, there is an urgent need to discover and develop timely and long-term-based therapeutic treatments from different sources. One such approach is harnessing the potential of plant secondary metabolites. Plants have been utilized for therapeutic purposes in addition to being used for nutritional benefits. In the last two decades, plant-based drug developments have been one of the effective means of treating human diseases owing to their multiple functions. More recently, anti-nutritional factors (ANFs) have emerged as one of the important targets for novel plant-based drug development due to their multifaceted and potential pharmacological properties. However, their anti-nutritional properties have been the major setback for their limited success in the pharmacological sector. In this review, we provide an overview of ANFs and their beneficial roles in preventing human diseases with multiple case studies. We also highlight the recent developments and applications of ANFs in the food industry, agriculture, and pharmaceutics with future perspectives. Furthermore, we evaluate meta-analyses on ANFs from the last 30 years in relation to their function in human health benefits. This review is an endeavor to reevaluate the merit of these natural compounds and explore their potential for both human and animal health.

2.
Am J Pathol ; 193(4): 493-508, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36638912

RESUMEN

To study the mechanism by which nonalcoholic fatty liver disease (NAFLD) contributes to vascular endothelial Nod-like receptor pyrin domain 3 (NLRP3) inflammasome activation and neointima hyperplasia, NAFLD was established in high-fat diet (HFD)-treated Asah1fl/fl/Albcre (liver-specific deletion of the acid ceramidase gene Asah1) mice. Compared with Asah1 flox [Asah1fl/fl/wild type (WT)] and wild-type (WT/WT) mice, Asah1fl/fl/Albcre mice exhibited significantly enhanced ceramide levels and lipid deposition on HFD in the liver. Moreover, Asah1fl/fl/Albcre mice showed enhanced expression of extracellular vesicle (EV) markers, CD63 and annexin II, but attenuated lysosome-multivesicular body fusion. All these changes were accompanied by significantly increased EV counts in the plasma. In a mouse model of neointima hyperplasia, liver-specific deletion of the Asah1 gene enhanced HFD-induced neointima proliferation, which was associated with increased endothelial NLRP3 inflammasome formation and activation and more severe endothelial damage. The EVs isolated from plasma of Asah1fl/fl/Albcre mice on HFD were found to markedly enhance NLRP3 inflammasome formation and activation in primary cultures of WT/WT endothelial cells compared with those isolated from WT/WT mice or normal diet-treated Asah1fl/fl/Albcre mice. These results suggest that the acid ceramidase/ceramide signaling pathway controls EV release from the liver, and its deficiency aggravates NAFLD and intensifies hepatic EV release into circulation, which promotes endothelial NLRP3 inflammasome activation and consequent neointima hyperplasia in the mouse carotid arteries.


Asunto(s)
Vesículas Extracelulares , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Inflamasomas/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ratones Noqueados , Ceramidasa Ácida/genética , Ceramidasa Ácida/metabolismo , Células Endoteliales/metabolismo , Neointima/metabolismo , Técnicas de Inactivación de Genes , Hiperplasia , Hígado/metabolismo , Vesículas Extracelulares/metabolismo , Ceramidas , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL
3.
J Lipid Res ; 63(12): 100298, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36252682

RESUMEN

The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome is activated during atherogenesis, but how this occurs is unclear. Here, we explored the mechanisms activating and regulating NLRP3 inflammasomes via the acid sphingomyelinase (ASM)-ceramide signaling pathway. As a neointima formation model, partial left carotid ligations were performed on endothelial cell (EC)-specific ASM transgene mice (Smpd1trg/ECcre) and their control littermates (Smpd1trg/WT and WT/WT) fed on the Western diet (WD). We found neointima formation remarkably increased in Smpd1trg/ECcre mice over their control littermates. Next, we observed enhanced colocalization of NLRP3 versus adaptor protein ASC (the adaptor molecule apoptosis-associated speck-like protein containing a CARD) or caspase-1 in the carotid ECs of WD-treated Smpd1trg/ECcre mice but not in their control littermates. In addition, we used membrane raft (MR) marker flotillin-1 and found more aggregation of ASM and ceramide in the intima of Smpd1trg/ECcre mice than their control littermates. Moreover, we demonstrated by in situ dihydroethidium staining, carotid intimal superoxide levels were much higher in WD-treated Smpd1trg/ECcre mice than in their control littermates. Using ECs from Smpd1trg/ECcre and WT/WT mice, we showed ASM overexpression markedly enhanced 7-ketocholesterol (7-Ket)-induced increases in NLRP3 inflammasome formation, accompanied by enhanced caspase-1 activity and elevated interleukin-1ß levels. These 7-Ket-induced increases were significantly attenuated by ASM inhibitor amitriptyline. Furthermore, we determined that increased MR clustering with NADPH oxidase subunits to produce superoxide contributes to 7-Ket-induced NLRP3 inflammasome activation via a thioredoxin-interacting protein-mediated controlling mechanism. We conclude that ceramide from ASM plays a critical role in NLRP3 inflammasome activation during hypercholesterolemia via MR redox signaling platforms to produce superoxide, which leads to TXNIP dissociation.


Asunto(s)
Hipercolesterolemia , Inflamasomas , Animales , Ratones , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas NLR , Superóxidos/metabolismo , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Neointima/metabolismo , Dominio Pirina , Ceramidas , Caspasas/metabolismo , Interleucina-1beta/metabolismo
4.
Front Physiol ; 13: 910339, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874544

RESUMEN

Recent studies have indicated that instant cell membrane resealing (ICMR) controls the activation of NOD-like receptor pyrin domain containing 3 (Nlrp3) inflammasomes in endothelial cells, thereby initiating and promoting vascular inflammation. It remains unknown whether this impaired ICMR occurs under diabetic condition or hyperglycemia contributing to endothelial dysfunction leading to vascular inflammation, a hallmark of diabetic vascular injury. The present study aims to examine whether ICMR occurs during in control and diabetic mice and to explore related molecular mechanisms associated with acid sphingomyelinase (ASM)-mediated ceramide production. Using confocal microscopy, we demonstrated that mouse aortic endothelial cells (MAECs) exposed to high glucose levels exhibited much more retarded ICMR after laser-induced membrane injury, compared to that in control cells. The high glucose-induced impairment of membrane resealing in MAECs was prevented when these cells were pretreated with sphingomyelin or C24-ceramide. Mechanistically, high glucose treatment decreased association of membrane ceramide with annexin A5, an essential element of membrane repair machinery. Consistently, the association of ceramide with annexin A5 was significantly reduced in the coronary arterial endothelium of mice with streptozotocin-induced diabetes mellitus compared to that in non-diabetic control mice. Moreover, a marked reduction of the association of ceramide with annexin A5 was observed in coronary arterial endothelium of ASM knockout mice regardless of their diabetic status. Lastly, high glucose treatment or ASM gene deletion substantially impaired ICMR in coronary arterial endothelium of mice receiving membrane puncturing agents. Collectively, our data suggest that ceramide-mediated ICMR in vascular endothelial cells is impaired during diabetes mellitus due to dissociation of ceramide with annexin A5 and ASM play a critical role in this ICMR.

5.
Am J Pathol ; 192(1): 43-55, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717894

RESUMEN

Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation in podocytes is reportedly associated with enhanced release of exosomes containing NLRP3 inflammasome products from these cells during hyperhomocysteinemia (hHcy). This study examined the possible role of increased exosome secretion during podocyte NLRP3 inflammasome activation in the glomerular inflammatory response. Whether exosome biogenesis and lysosome function are involved in the regulation of exosome release from podocytes during hHcy in mice and upon stimulation of homocysteine (Hcy) in podocytes was tested. By nanoparticle tracking analysis, treatments of mice with amitriptyline (acid sphingomyelinase inhibitor), GW4869 (exosome biogenesis inhibitor), and rapamycin (lysosome function enhancer) were found to inhibit elevated urinary exosomes during hHcy. By examining NLRP3 inflammasome activation in glomeruli during hHcy, amitriptyline (but not GW4869 and rapamycin) was shown to have an inhibitory effect. However, all treatments attenuated glomerular inflammation and injury during hHcy. In cell studies, Hcy treatment stimulated exosome release from podocytes, which was prevented by amitriptyline, GW4869, and rapamycin. Structured illumination microscopy revealed that Hcy inhibited lysosome-multivesicular body interactions in podocytes, which was prevented by amitriptyline or rapamycin but not GW4869. Thus, the data from this study shows that activation of exosome biogenesis and dysregulated lysosome function are critically implicated in the enhancement of exosome release from podocytes leading to glomerular inflammation and injury during hHcy.


Asunto(s)
Exosomas/metabolismo , Hiperhomocisteinemia/patología , Inflamación/patología , Glomérulos Renales/patología , Lisosomas/metabolismo , Podocitos/metabolismo , Animales , Homocisteína/metabolismo , Inflamasomas/metabolismo , Masculino , Ratones Endogámicos C57BL , Cuerpos Multivesiculares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Podocitos/patología , Esfingomielina Fosfodiesterasa/metabolismo
6.
J Inflamm Res ; 14: 3501-3521, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34335040

RESUMEN

BACKGROUND: Exosomes have been reported to mediate activation of the inflammatory response by secretion of inflammasome products such as IL-1ß or IL-18 and that changes in exosomes production or secretion may be a therapeutic target for treatment of a variety of different chronic diseases. The present study tested the hypothesis that exosome-mediated release of NLRP3 inflammasome products instigates the inflammatory response in the lung during emphysema, a type of chronic obstructive pulmonary disease (COPD) and that electroacupuncture (EA) may attenuate emphysema by inhibition of NLRP3 inflammasome activation and consequent inflammation. METHODS: The COPD mice model was developed by injecting porcine pancreatic elastase (PPE) via puncture tracheotomy and instillation. EA (4 Hz/20 Hz, 1 to 3 mA) was applied to the bilateral BL13 and ST36 for 30 min, once every other day for 2 weeks. Micro computed tomography (micro-CT) was performed to measure lung function. Histopathological changes in the lungs were displayed by HE staining. RESULTS: In a mouse model of porcine pancreatic elastase (PPE)-induced emphysema, the lung tissue was found to display several key features of emphysema, including alveolar septal thickening, enlarged alveoli, interstitial edema, and inflammatory cells infiltration. Lungs of mice receiving PPE exhibited substantially increased low attenuation area (LAA) in micro-CT images. The colocalization of NLRP3 vs ASC or caspase-1 detected by confocal microscopy was shown to increase in both bronchial and alveolar walls, indicating the increased formation of NLRP3 inflammasomes. IL-1ß, a prototype NLRP3 inflammasome activating product, was also found to have increased in the lung during emphysema, which was colocalized with CD63 (an exosome marker), an indicative of inflammatory exosome formation. By nanoparticle tracking analysis (NTA), IL-1ß-containing exosomes were shown to significantly increase in the bronchoalveolar lavage (BAL) from mice with emphysema. Therapeutically, IL-1ß production in the lung during emphysema was significantly reduced by EA at the acupoint Feishu (BL13) and Zusanli (ST36), accompanied by decreased colocalization of NLRP3 vs ASC or caspase-1. Increased exosome release into BAL during emphysema was shown to be significantly attenuated in EA-treated mice compared to their controls. However, EA of non-specific BL23 together with ST36 acupoint had no effects on NLRP3 inflammasome activation, exosome release and associated lung pathology during emphysema. CONCLUSION: NLRP3 inflammasome activation in concert with increased release of exosomes containing IL-1ß or other inflammasome products contributes to the development of lung inflammation and injury during PPE-induced emphysema and that EA of lung-specific acupoints attenuates inflammasome activation and exosome release, thereby reducing inflammatory response in the lung of mice with emphysema.

7.
FASEB J ; 35(7): e21732, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34143450

RESUMEN

Acid ceramidase (murine gene code: Asah1) (50 kDa) belongs to N-terminal nucleophile hydrolase family. This enzyme is located in the lysosome, which mediates conversion of ceramide (CER) into sphingosine and free fatty acids at acidic pH. CER plays an important role in intracellular sphingolipid metabolism and its increase causes inflammation. The mammalian target of rapamycin complex 1 (mTORC1) signaling on late endosomes (LEs)/lysosomes may control cargo selection, membrane biogenesis, and exosome secretion, which may be fine controlled by lysosomal sphingolipids such as CER. This lysosomal-CER-mTOR signaling may be a crucial molecular mechanism responsible for development of arterial medial calcification (AMC). Torin-1 (5 mg/kg/day), an mTOR inhibitor, significantly decreased aortic medial calcification accompanied with decreased expression of osteogenic markers like osteopontin (OSP) and runt-related transcription factor 2 (RUNX2) and upregulation of smooth muscle 22α (SM22-α) in mice receiving high dose of Vitamin D (500 000 IU/kg/day). Asah1fl/fl /SMCre mice had markedly increased co-localization of mTORC1 with lysosome-associated membrane protein-1 (Lamp-1) (lysosome marker) and decreased co-localization of vacuolar protein sorting-associated protein 16 (VPS16) (a multivesicular bodies [MVBs] marker) with Lamp-1, suggesting mTOR activation caused reduced MVBs interaction with lysosomes. Torin-1 significantly reduced the co-localization of mTOR vs Lamp-1, increased lysosome-MVB interaction which was associated with reduced accumulation of CD63 and annexin 2 (exosome markers) in the coronary arterial wall of mice. Using coronary artery smooth muscle cells (CASMCs), Pi -stimulation significantly increased p-mTOR expression in Asah1fl/fl /SMCre CASMCs as compared to WT/WT cells associated with increased calcium deposition and mineralization. Torin-1 blocked Pi -induced calcium deposition and mineralization. siRNA mTOR and Torin-1 significantly reduce co-localization of mTORC1 with Lamp-1, increased VPS16 vs Lamp-1 co-localization in Pi -stimulated CASMCs, associated with decreased exosome release. Functionally, Torin-1 significantly reduces arterial stiffening as shown by restoration from increased pulse wave velocity and decreased elastin breaks. These results suggest that lysosomal CER-mTOR signaling may play a critical role for the control of lysosome-MVB interaction, exosome secretion and arterial stiffening during AMC.


Asunto(s)
Ceramidasa Ácida/metabolismo , Exosomas/metabolismo , Mamíferos/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteogénesis/fisiología , Sirolimus/metabolismo , Animales , Aorta/metabolismo , Calcio/metabolismo , Ceramidas/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Vasos Coronarios/metabolismo , Lisosomas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cuerpos Multivesiculares/metabolismo , Análisis de la Onda del Pulso/métodos , Transducción de Señal/fisiología , Esfingolípidos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Calcificación Vascular/metabolismo
8.
Cell Physiol Biochem ; 55(3): 277-300, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34019755

RESUMEN

The lysosome is a single ubiquitous membrane-enclosed intracellular organelle with an acidic pH present in all eukaryotic cells, which contains large numbers of hydrolytic enzymes with their maximal enzymatic activity at a low pH (pH ≤ 5) such as proteases, nucleases, and phosphatases that are able to degrade extracellular and intracellular components. It is well known that lysosomes act as a center for degradation and recycling of large numbers of macromolecules delivered by endocytosis, phagocytosis, and autophagy. Lysosomes are recognized as key organelles for cellular clearance and are involved in many cellular processes and maintain cellular homeostasis. Recently, it has been shown that lysosome function and its related pathways are of particular importance in vascular regulation and related diseases. In this review, we highlighted studies that have improved our understanding of the connection between lysosome function and vascular physiological and pathophysiological activities in arterial smooth muscle cells (SMCs) and endothelial cells (ECs). Sphingolipids-metabolizingenzymes in lysosomes play critical roles in intracellular signaling events that influence cellular behavior and function in SMCs and ECs. The focus of this review will be to define the mechanism by which the lysosome contributes to cardiovascular regulation and diseases. It is believed that exploring the role of lysosomal function and its sphingolipid metabolism in the initiation and progression of vascular disease and regulation may provide novel insights into the understanding of vascular pathobiology and helps develop more effective therapeutic strategies for vascular diseases.


Asunto(s)
Enfermedades Cardiovasculares/metabolismo , Células Endoteliales/metabolismo , Lisosomas/metabolismo , Miocitos del Músculo Liso/metabolismo , Esfingolípidos/metabolismo , Animales , Enfermedades Cardiovasculares/patología , Células Endoteliales/patología , Humanos , Lisosomas/patología , Miocitos del Músculo Liso/patología
9.
Biochim Biophys Acta Mol Basis Dis ; 1867(7): 166146, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33862145

RESUMEN

The nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome has been implicated in podocyte injury and glomerular sclerosis in response to hyperhomocysteinemia (hHcy). However, it remains unknown how the products of NLRP3 inflammasome in cytoplasm are secreted out of podocytes. In the present study, we tested whether exosome release serves as a critical mechanism to mediate the action of NLRP3 inflammasome activation in hHcy-induced glomerular injury. By various approaches, we found that hHcy induced NLRP3 inflammasome activation and neutrophil infiltration in glomeruli of WT/WT mice. Lysosome-MVB interaction in glomeruli remarkably decreased in WT/WT mice fed with FF diet, leading to elevation of urinary exosome excretion of these mice. Podocyte-derived exosomes containing pro-inflammatory cytokines increased in urine of WT/WT mice in response to hHcy. The release of inflammatory exosomes from podocytes was prevented by Smpd1 gene deletion but enhanced by podocyte-specific Smpd1 gene overexpression (Smpd1 encodes Asm in mice). Pathologically, hHcy-induced podocyte injury and glomerular sclerosis were blocked by Smpd1 gene knockout but amplified by podocyte-specific Smpd1 gene overexpression. Taken together, our results suggest that Asm-ceramide signaling pathway contributes to NLRP3 inflammasome activation and robust release of inflammatory exosomes in podocytes during hHcy, which together trigger local glomerular inflammation and sclerosis.


Asunto(s)
Exosomas/patología , Hiperhomocisteinemia/complicaciones , Inflamación/patología , Enfermedades Renales/patología , Podocitos/patología , Esclerosis/patología , Esfingomielina Fosfodiesterasa/fisiología , Animales , Exosomas/metabolismo , Inflamasomas , Inflamación/etiología , Inflamación/metabolismo , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Podocitos/metabolismo , Esclerosis/etiología , Esclerosis/metabolismo
10.
Artículo en Inglés | MEDLINE | ID: mdl-33221496

RESUMEN

Podocytopathy and associated nephrotic syndrome (NS) have been reported in a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of α subunit (the main catalytic subunit) of acid ceramidase (Ac). However, the pathogenesis of podocytopathy of these mice remains unknown. The present study tested whether exosome release from podocytes is enhanced due to Asah1 gene knockout, which may serve as a pathogenic mechanism switching on podocytopathy and associated NS in Asah1fl/fl/PodoCre mice. We first demonstrated the remarkable elevation of urinary exosome excretion in Asah1fl/fl/PodoCre mice compared with WT/WT mice, which was accompanied by significant Annexin-II (an exosome marker) accumulation in glomeruli of Asah1fl/fl/PodoCre mice, as detected by immunohistochemistry. In cell studies, we also confirmed that Asah1 gene knockout enhanced exosome release in the primary cultures of podocyte isolated from Asah1fl/fl/PodoCre mice compared to WT/WT mice. In the podocytes from Asah1fl/fl/PodoCre mice, the interactions of lysosome and multivesicular body (MVB) were demonstrated to be decreased in comparison with those from their control littermates, suggesting reduced MVB degradation that may lead to increase in exosome release. Given the critical role of transient receptor potential mucolipin 1 (TRPML1) channel in Ca2+-dependent lysosome trafficking and consequent lysosome-MVB interaction, we tested whether lysosomal Ca2+ release through TRPML1 channels is inhibited in the podocytes of Asah1fl/fl/PodoCre mice. By GCaMP3 Ca2+ imaging, it was found that lysosomal Ca2+ release through TRPML1 channels was substantially suppressed in podocytes with Asah1 gene deletion. As an Ac product, sphingosine was found to rescue TRPML1 channel activity and thereby recover lysosome-MVB interaction and reduce exosome release of podocytes from Asah1fl/fl/PodoCre mice. Combination of N, N-dimethylsphingosine (DMS), a potent sphingosine kinase inhibitor, and sphingosine significantly inhibited urinary exosome excretion of Asah1fl/fl/PodoCre mice. Moreover, rescue of Aash1 gene expression in podocytes of Asah1fl/fl/PodoCre mice showed normal ceramide metabolism and exosome secretion. Based on these results, we conclude that the normal expression of Ac importantly contributes to the control of TRPML1 channel activity, lysosome-MVB interaction, and consequent exosome release from podocytes. Asah1 gene defect inhibits TRPML1 channel activity and thereby enhances exosome release, which may contribute to the development of podocytopathy and associated NS.


Asunto(s)
Ceramidasa Ácida/genética , Exosomas/metabolismo , Síndrome Nefrótico/genética , Podocitos/patología , Canales de Potencial de Receptor Transitorio/metabolismo , Ceramidasa Ácida/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Lisosomas/metabolismo , Masculino , Ratones , Ratones Noqueados , Síndrome Nefrótico/patología , Síndrome Nefrótico/orina , Podocitos/citología , Cultivo Primario de Células , Orina/citología
11.
Am J Pathol ; 190(6): 1211-1223, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32194052

RESUMEN

Lysosomal acid ceramidase (Ac) has been shown to be critical for ceramide hydrolysis and regulation of lysosome function and cellular homeostasis. In the present study, we generated a knockout mouse strain (Asah1fl/fl/PodoCre) with a podocyte-specific deletion of the α subunit (main catalytic subunit) of Ac. Although no significant morphologic changes in glomeruli were observed in these mice under light microscope, severe proteinuria and albuminuria were found in these podocyte-specific knockout mice compared with control genotype littermates. Transmission electron microscopic analysis showed that podocytes of the knockout mice had distinctive foot process effacement and microvillus formation. These functional and morphologic changes indicate the development of nephrotic syndrome in mice bearing the Asah1 podocyte-specific gene deletion. Ceramide accumulation determined by liquid chromatography-tandem mass spectrometry was demonstrated in isolated glomeruli of Asah1fl/fl/PodoCre mice compared with their littermates. By crossbreeding Asah1fl/fl/PodoCre mice with Smpd1-/- mice, we also produced a double knockout strain, Smpd1-/-/Asah1fl/fl/PodoCre, that also lacks Smpd1, the acid sphingomyelinase that hydrolyzes sphingomyelin to ceramide. These mice exhibited significantly lower levels of glomerular ceramide with decreased podocyte injury compared with Asah1fl/fl/PodoCre mice. These results strongly suggest that lysosomal Ac in podocytes is essential for the maintenance of the structural and functional integrity of podocytes.


Asunto(s)
Ceramidasa Ácida/genética , Ceramidas/metabolismo , Glomérulos Renales/metabolismo , Síndrome Nefrótico/metabolismo , Podocitos/metabolismo , Ceramidasa Ácida/metabolismo , Animales , Glomérulos Renales/patología , Glomérulos Renales/ultraestructura , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Síndrome Nefrótico/genética , Síndrome Nefrótico/patología , Podocitos/patología , Podocitos/ultraestructura
12.
Int J Mol Sci ; 21(5)2020 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-32138242

RESUMEN

Recent studies have shown that arterial medial calcification is mediated by abnormal release of exosomes/small extracellular vesicles from vascular smooth muscle cells (VSMCs) and that small extracellular vesicle (sEV) secretion from cells is associated with lysosome activity. The present study was designed to investigate whether lysosomal expression of mucolipin-1, a product of the mouse Mcoln1 gene, contributes to lysosomal positioning and sEV secretion, thereby leading to arterial medial calcification (AMC) and stiffening. In Mcoln1-/- mice, we found that a high dose of vitamin D (Vit D; 500,000 IU/kg/day) resulted in increased AMC compared to their wild-type littermates, which was accompanied by significant downregulation of SM22-α and upregulation of RUNX2 and osteopontin in the arterial media, indicating a phenotypic switch to osteogenic. It was also shown that significantly decreased co-localization of lysosome marker (Lamp-1) with lysosome coupling marker (Rab 7 and ALG-2) in the aortic wall of Mcoln1-/- mice as compared to their wild-type littermates. Besides, Mcoln1-/- mice showed significant increase in the expression of exosome/ sEV markers, CD63, and annexin-II (AnX2) in the arterial medial wall, accompanied by significantly reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), suggesting a reduction of the lysosome-MVB interactions. In the plasma of Mcoln1-/- mice, the number of sEVs significantly increased as compared to the wild-type littermates. Functionally, pulse wave velocity (PWV), an arterial stiffening indicator, was found significantly increased in Mcoln1-/- mice, and Vit D treatment further enhanced such stiffening. All these data indicate that the Mcoln1 gene deletion in mice leads to abnormal lysosome positioning and increased sEV secretion, which may contribute to the arterial stiffness during the development of AMC.


Asunto(s)
Vesículas Extracelulares/metabolismo , Lisosomas/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Calcificación Vascular/metabolismo , Animales , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Vesículas Extracelulares/patología , Inmunohistoquímica , Proteína 1 de la Membrana Asociada a los Lisosomas/genética , Proteína 1 de la Membrana Asociada a los Lisosomas/metabolismo , Lisosomas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales de Potencial de Receptor Transitorio/genética
13.
Front Cell Dev Biol ; 8: 111, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211403

RESUMEN

High-mobility group box 1 protein (HMGB1) has been reported to trigger lysosome destabilization causing a wide of inflammatory diseases. The present study tested whether a lysosomal enzyme, acid ceramidase (AC), plays a critical role in HMGB1-induced alteration in ceramide metabolism and whether such HMGB1-AC interaction is associated with abnormal migration and proliferation of vascular smooth muscle cells (SMCs). We first observed that the expression of AC in the medial layer of mouse coronary arterial wall and colocalization of AC with a lysosome marker Lamp-1. In primary cultured coronary arterial myocytes (CAMs), AC expression and colocalization with Lamp-1 were significantly up-regulated by AC inducer, genistein, but down-regulated by AC inhibitor, N-oleoylethanolamine (NOE). HMGB1 dose-dependently decreased the colocalization of AC with Lamp-1 and reduced mRNA and protein expressions of AC in CAMs, but reversed by genistein. Consistently, HMGB1 significantly induced increases in the levels of long-chain ceramides in CAMs, which were not further enhanced by NOE but blocked by genistein. More importantly, HMGB1 promoted migration and proliferation of CAMs, which were not further increased by NOE but reduced by genistein. Lastly, CAMs isolated from smooth muscle-specific AC knockout mice (AC gene Asah1) exhibited increased ceramide levels and enhanced the migration and proliferation, which resembles the effects of HMGB1 on wild-type CAMs. Together, these results suggest that HMGB1 promotes SMC migration and proliferation via inhibition of AC expression and ceramide accumulation.

14.
Sci Rep ; 10(1): 1645, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-32015399

RESUMEN

Arterial medial calcification (AMC) involves an increased small extracellular vesicle (sEV) secretion and apatite calcium precipitation in the arterial wall. The mechanisms mediating AMC remain poorly understood. In the present study, smooth muscle-specific acid ceramidase (Ac) gene knockout mice (Asah1fl/fl/SMCre) were used to demonstrate the role of lysosomal ceramide signaling pathway in AMC. Asah1fl/fl/SMCre mice were found to have more severe AMC in both aorta and coronary arteries compared to their littermates (Asah1fl/fl/SMwt and WT/WT mice) after receiving a high dose vitamin D. These mice also had pronounced upregulation of osteopontin and RUNX2 (osteogenic markers), CD63, AnX2 (sEV markers) and ALP expression (mineralization marker) in the arterial media. In cultured coronary arterial smooth muscle cells (CASMCs) from Asah1fl/fl/SMCre mice, high dose of Pi led to a significantly increased calcium deposition, phenotypic change and sEV secretion compared to WT CASMCs, which was associated with reduced lysosome-multivesicular body (MVB) interaction. Also, GW4869, sEV release inhibitor decreased sEV secretion and calcification in these cells. Lysosomal transient receptor potential mucolipin 1 (TRPML1) channels regulating lysosome interaction with MVBs were found remarkably inhibited in Asah1fl/fl/SMCre CASMCs as shown by GCaMP3 Ca2+ imaging and Port-a-Patch patch clamping of lysosomes. Lysosomal Ac in SMCs controls sEV release by regulating lysosomal TRPML1 channel activity and lysosome-MVB interaction, which importantly contributes to phenotypic transition and AMC.


Asunto(s)
Ceramidasa Ácida/metabolismo , Calcificación Vascular/metabolismo , Ceramidasa Ácida/genética , Animales , Aorta/metabolismo , Aorta/patología , Señalización del Calcio , Células Cultivadas , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Lipogranulomatosis de Farber/genética , Lipogranulomatosis de Farber/metabolismo , Lisosomas/metabolismo , Masculino , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Cardiovasculares , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Esfingolípidos/metabolismo , Canales de Potencial de Receptor Transitorio/agonistas , Canales de Potencial de Receptor Transitorio/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/patología
15.
Front Cell Dev Biol ; 8: 597423, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33409276

RESUMEN

Recent studies reported that vascular endothelial cells (ECs) secrete NLR family pyrin domain-containing 3 (NLRP3) inflammasome products such as interleukin-1ß (IL-1ß) via extracellular vesicles (EVs) under various pathological conditions. EVs represent one of the critical mechanisms mediating the cell-to-cell communication between ECs and vascular smooth muscle cells (VSMCs). However, whether or not the inflammasome-dependent EVs directly participate in the regulation of VSMC function remains unknown. In the present study, we found that in cultured carotid ECs, atherogenic stimulation by oxysterol 7-ketocholesterol (7-Ket) induced NLRP3 inflammasome formation and activation, reduced lysosome-multivesicular bodies (MVBs) fusion, and increased secretion of EVs that contain inflammasome product IL-1ß. These EC-derived IL-1ß-containing EVs promoted synthetic phenotype transition of co-cultured VSMCs, whereas EVs from unstimulated ECs have the opposite effects. Moreover, acid ceramidase (AC) deficiency or lysosome inhibition further exaggerated the 7-Ket-induced release of IL-1ß-containing EVs in ECs. Using a Western diet (WD)-induced hypercholesterolemia mouse model, we found that endothelial-specific AC gene knockout mice (Asah1fl/fl/ECCre) exhibited augmented WD-induced EV secretion with IL-1ß and more significantly decreased the interaction of MVBs with lysosomes in the carotid arterial wall compared to their wild-type littermates (WT/WT). The endothelial AC deficiency in Asah1fl/fl/ECCre mice also resulted in enhanced VSMC phenotype transition and accelerated neointima formation. Together, these results suggest that NLRP3 inflammasome-dependent IL-1ß production during hypercholesterolemia promotes VSMC phenotype transition to synthetic status via EV machinery, which is controlled by lysosomal AC activity. Our findings provide novel mechanistic insights into understanding the pathogenic role of endothelial NLRP3 inflammasome in vascular injury through EV-mediated EC-to-VSMC regulation.

16.
J Cell Mol Med ; 24(1): 539-553, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31743567

RESUMEN

Arterial medial calcification (AMC) is associated with crystallization of hydroxyapatite in the extracellular matrix and arterial smooth muscle cells (SMCs) leading to reduced arterial compliance. The study was performed to test whether lysosomal acid sphingomyelinase (murine gene code: Smpd1)-derived ceramide contributes to the small extracellular vesicle (sEV) secretion from SMCs and consequently leads to AMC. In Smpd1trg /SMcre mice with SMC-specific overexpression of Smpd1 gene, a high dose of Vit D (500 000 IU/kg/d) resulted in increased aortic and coronary AMC, associated with augmented expression of RUNX2 and osteopontin in the coronary and aortic media compared with their littermates (Smpd1trg /SMwt and WT/WT mice), indicating phenotypic switch. However, amitriptyline, an acid sphingomyelinase (ASM) inhibitor, reduced calcification and reversed phenotypic switch. Smpd1trg /SMcre mice showed increased CD63, AnX2 and ALP levels in the arterial wall, accompanied by reduced co-localization of lysosome marker (Lamp-1) with multivesicular body (MVB) marker (VPS16), a parameter for lysosome-MVB interaction. All these changes related to lysosome fusion and sEV release were substantially attenuated by amitriptyline. Increased arterial stiffness and elastin disorganization were found in Smpd1trg /SMcre mice as compared to their littermates. In cultured coronary arterial SMCs (CASMCs) from Smpd1trg /SMcre mice, increased Pi concentrations led to markedly increased calcium deposition, phenotypic change and sEV secretion compared with WT CASMCs, accompanied by reduced lysosome-MVB interaction. However, amitriptyline prevented these changes in Pi -treated CASMCs. These data indicate that lysosomal ceramide plays a critical role in phenotype change and sEV release in SMCs, which may contribute to the arterial stiffness during the development of AMC.


Asunto(s)
Ceramidas/efectos adversos , Vasos Coronarios/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Esfingomielina Fosfodiesterasa/metabolismo , Calcificación Vascular/patología , Animales , Aorta/efectos de los fármacos , Aorta/patología , Aorta/fisiopatología , Vesículas Extracelulares/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones Transgénicos , Fenotipo , Calcificación Vascular/fisiopatología , Rigidez Vascular/efectos de los fármacos , Vitamina D/farmacología
17.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(12): 158532, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31647995

RESUMEN

Exosomes have been demonstrated to be one of the mechanisms mediating the release of intracellular signaling molecules to conduct cell-to-cell communication. However, it remains unknown whether and how exosomes mediate the release of NOD-like receptor pyrin domain 3 (NLRP3) inflammasome products such as interleukin-1 beta (IL-1ß) from endothelial cells. The present study hypothesized that lysosomal acid ceramidase (AC) determines the fate of multivesicular bodies (MVBs) to control the exosome-mediated release of NLRP3 inflammasome products during hyperglycemia. Using a streptozotocin (STZ)-induced diabetes mouse model, we found that endothelium-specific AC gene knockout mice (Asah1fl/fl/ECcre) significantly enhanced the formation and activation of NLRP3 inflammasomes in coronary arterial ECs (CECs). These mice also had increased thickening of the coronary arterial wall and reduced expression of tight junction protein compared to wild-type (WT/WT) littermates. We also observed the expression of exosome markers such as CD63 and alkaline phosphatase (ALP) was augmented in STZ-treated Asah1fl/fl/ECcre mice compared to WT/WT mice, which was accompanied by an increased IL-1ß release of exosomes. In the primary cultures of CECs, we demonstrated that AC deficiency markedly enhanced the formation and activation of NLRP3 inflammasomes, but significantly down-regulated tight junction proteins when these cells were exposed to high levels of glucose. The CECs from Asah1fl/fl/ECcre mice had decreased MVB-lysosome interaction and increased IL-1ß-containing exosome release in response to high glucose stimulation. Together, these results suggest that AC importantly controls exosome-mediated release of NLRP3 inflammasome products in CECs, which is enhanced by AC deficiency leading to aggravated arterial inflammatory response during hyperglycemia.


Asunto(s)
Ceramidasa Ácida/inmunología , Células Endoteliales/inmunología , Hiperglucemia/inmunología , Inflamasomas/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Ceramidasa Ácida/genética , Animales , Vasos Coronarios/inmunología , Vasos Coronarios/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/inmunología , Diabetes Mellitus Experimental/patología , Células Endoteliales/patología , Exosomas/inmunología , Exosomas/patología , Femenino , Eliminación de Gen , Hiperglucemia/genética , Hiperglucemia/patología , Masculino , Ratones , Ratones Noqueados
18.
Front Physiol ; 10: 1213, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31632284

RESUMEN

The glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone secreted by intestinal enteroendocrine L-cells, which plays a crucial role in glucose control, regulation, and protection from different pathological conditions such as diabetes mellitus. The present study sought to test whether GLP-1 release increases gut injury with a high-fat diet (HFD) and whether this GLP-1 release is associated with NLRP3 inflammasome activation. Our results showed that the NLRP3 inflammasome is activated in the intestinal tissue of wild-type mice on a HFD, accompanied by GLP-1 overexpression. The number of intestinal L-cells and the GLP-1 level in serum are increased in WT mice with HFD. However, in the Asc-/- and Nlrp3-/- mice, these HFD-induced intestinal and serum GLP-1 changes were suppressed. Using confocal microscopy, the colocalization of GLP-1 and FLICA that labels activated caspase-1 in intestine was decreased in the Asc-/- and Nlrp3-/- mice compared to WT mice. Mechanistically, the inhibitor of caspase-1 or HMGB1 blocker is used to demonstrate the regulatory action of NRLP3 inflammasome in GLP-1 release. It was found that the level of GLP-1 and its colocalization with IL-1ß were reduced by inhibition of the caspase-1 activity, but not altered by blockade of HMGB1 action. Our results suggest that NLRP3 inflammasome activation triggers GLP-1 production from the intestine, which is associated with IL-1ß, but not with HMGB1. These findings for the first time provide evidence that the activation of NLRP3 inflammasome in the intestine increases GLP-1 release in mice, which may serve as an adaptive response to intestinal inflammation.

19.
Am J Physiol Cell Physiol ; 317(3): C481-C491, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268777

RESUMEN

The transient receptor potential mucolipin 1 (TRPML1) channel has been reported to mediate lysosomal Ca2+ release that is involved in Ca2+-dependent lysosome trafficking and autophagic flux. However, this regulatory mechanism of lysosomal TRPML1 channel activity in podocytes remains poorly understood. In the present study, we tested whether the TRPML1 channel in podocytes mediates lysosome trafficking, which is essential for multivesicular body (MVB) degradation by lysosomes. We first demonstrated the abundant expression of TRPML1 channel in podocytes. By GCaMP3 Ca2+ imaging, we characterized the lysosomal specificity of TRPML1 channel-mediated Ca2+ release in podocytes. Given the important role of acid ceramidase (AC) in lysosome function and podocyte injury, we tested whether AC regulates this TRPML1 channel-mediated Ca2+ release and consequent lysosome-dependent MVB degradation in podocytes. Pharmacologically, it was found that TRPML1 channel activity was remarkably attenuated by the AC inhibitor carmofur. Sphingosine, as an AC product, was demonstrated to induce TRPML1-mediated Ca2+ release, which was inhibited by a TRPML1 blocker, verapamil. Using a Port-a-Patch planar patch-clamp system, we found that AC-associated sphingolipids, sphingomyelin, ceramide, and sphingosine had different effects on TRPML1 channel activity in podocytes. Functionally, the inhibition of AC or blockade of TRPML1 channels was found to suppress the interaction of lysosomes and MVBs, leading to increased exosome release from podocytes. These results suggest that AC is critical for TRPML1 channel-mediated Ca2+ release, which controls lysosome-MVB interaction and exosome release in podocytes.


Asunto(s)
Ceramidasa Ácida/metabolismo , Exosomas/metabolismo , Lisosomas/metabolismo , Podocitos/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Ceramidasa Ácida/antagonistas & inhibidores , Animales , Línea Celular Transformada , Exosomas/efectos de los fármacos , Fluorouracilo/análogos & derivados , Fluorouracilo/farmacología , Lisosomas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Podocitos/efectos de los fármacos
20.
Biochim Biophys Acta Mol Cell Res ; 1866(5): 849-860, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30771382

RESUMEN

The NLRP3 inflammasome is activated in the cytoplasm of cells and its products such as IL-1ß are exported through a non-classical ER-Golgi pathway. Several mechanistically distinct models including exocytosis of secretory lysosomes, microvesicles (MVs) and extracellular vehicles (EVs) have been proposed for their release. In this study, we hypothesized that the NLRP3 inflammasome product, IL-1ß in response to exogenously administrated and endogenously produced d-ribose stimulation is released via extracellular vesicles including EVs via a sphingolipid-mediated molecular mechanisms controlling lysosome and multivesicular body (MVB) interaction. First, we demonstrated that both endogenous and exogenous d-ribose induced NLRP3 inflammasome activation to produce IL-1ß, which was released via EVs in podocytes. Then, we found that colocalization of marker MVB marker VPS16 with IL-1ß within podocytes increased upon d-ribose stimulation, which was accompanied by decreased colocalization of lysosome marker Lamp-1 and VPS16, suggesting decrease in MVB inclusion of IL-1ß due to reduced lysosome and MVB interaction. All these changes were mimicked and accelerated by lysosome v-ATPase inhibitor, bafilomycin. Moreover, ceramide in podocytes was found elevated upon d-ribose stimulation, and prior treatments of podocyte with acid sphingomyelinase (Asm) inhibitor, amitriptyline, acid ceramidase (AC) inducer, genistein, or AC CRISPR/cas9 activation plasmids were found to decrease d-ribose-induced ceramide accumulation, EVs release and IL-1ß secretion due to reduced interactions of lysosome with MVBs. These results suggest that inflammasome-derived products such as IL-1ß during d-ribose stimulation are released via EVs, in which lysosomal sphingolipid-mediated regulation of lysosome function plays an important role.


Asunto(s)
Lisosomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Podocitos/metabolismo , Ribosa/metabolismo , Vesículas Secretoras/metabolismo , Animales , Línea Celular Transformada , Lisosomas/genética , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Podocitos/citología , Ribosa/genética , Vesículas Secretoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...