Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(1): 20, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150028

RESUMEN

KEY MESSAGE: CstMYB1R1 acts as a positive regulator of Crocus anthocyanin biosynthesis and abiotic stress tolerance which was experimentally demonstrated through molecular analysis and over-expression studies in Crocus and Nicotiana. Regulatory mechanics of flavonoid/anthocyanin biosynthesis in Crocus floral tissues along the diurnal clock has not been studied to date. MYB proteins represent the most dominant, functionally diverse and versatile type of plant transcription factors which regulate key metabolic and physiological processes in planta. Transcriptome analysis revealed that MYB family is the most dominant transcription factor family in C. sativus. Considering this, a MYB-related REVEILLE-8 type transcription factor, CstMYB1R1, was explored for its possible role in regulating Crocus flavonoid and anthocyanin biosynthetic pathway. CstMYB1R1 was highly expressed in Crocus floral tissues, particularly tepals and its expression was shown to peak at dawn and dusk time points. Anthocyanin accumulation also peaked at dawn and dusk and was minimum at night. Moreover, the diurnal expression pattern of CstMYB1R1 was shown to highly correlate with Crocus ANS/LDOX gene expression among the late anthocyanin pathway genes. CstMYB1R1 was shown to be nuclear localized and transcriptionally active. CstMYB1R1 over-expression in Crocus tepals enhanced anthocyanin levels and upregulated transcripts of Crocus flavonoid and anthocyanin biosynthetic pathway genes. Yeast one hybrid (Y1H) and GUS reporter assay confirmed that CstMYB1R1 interacts with the promoter of Crocus LDOX gene to directly regulate its transcription. In addition, the expression of CstMYB1R1 in Nicotiana plants significantly enhanced flavonoid and anthocyanin levels and improved their abiotic stress tolerance. The present study, thus, confirmed positive role of CstMYB1R1 in regulating Crocus anthocyanin biosynthetic pathway in a diurnal clock-specific fashion together with its involvement in the regulation of abiotic stress response.


Asunto(s)
Crocus , Crocus/genética , Antocianinas , Regulación de la Expresión Génica , Flavonoides , Nicotiana/genética , Estrés Fisiológico/genética
2.
Plant Cell Physiol ; 64(11): 1407-1418, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37705247

RESUMEN

Crocus sativus has emerged as an important crop because it is the only commercial source of saffron that contains unique apocarotenoids. Saffron is composed of dried stigmas of Crocus flower and constitutes the most priced spice of the world. Crocus floral organs are dominated by different classes of metabolites. While stigmas are characterized by the presence of apocarotenoids, tepals are rich in flavonoids and anthocyanins. Therefore, an intricate regulatory network might play a role in allowing different compounds to dominate in different organs. Work so far done on Crocus is focussed on apocarotenoid metabolism and its regulation. There are no reports describing the regulation of flavonoids and anthocyanins in Crocus tepals. In this context, we identified an R2R3 transcription factor, CstMYB16, which resembles subgroup 4 (SG4) repressors of Arabidopsis. CstMYB16 is nuclear localized and acts as a repressor. Overexpression of CstMYB16 in Crocus downregulated anthocyanin biosynthesis. The C2/EAR motif was responsible for the repressor activity of CstMYB16. CstMYB16 binds to the promoter of the anthocyanin biosynthetic pathway gene (LDOX) and reduces its expression. CstMYB16 also physically interacts with CstPIF4, which in turn is regulated by temperature and circadian clock. Thus, CstPIF4 integrates these signals and forms a repressor complex with CstMYB16, which is involved in the negative regulation of anthocyanin biosynthesis in Crocus. Independent of CstPIF4, CstMYB16 also represses CstPAP1 expression, which is a component of the MYB-bHLH-WD40 (MBW) complex and positively controls anthocyanin biosynthesis. This is the first report on identifying and describing regulators of anthocyanin biosynthesis in Crocus.


Asunto(s)
Arabidopsis , Crocus , Crocus/genética , Crocus/metabolismo , Antocianinas/metabolismo , Carotenoides/metabolismo , Temperatura , Flavonoides/metabolismo , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Mol Biol ; 107(1-2): 49-62, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34417937

RESUMEN

KEY MESSAGE: Two MYB genes have been identified which regulate apocarotenoid metabolism in Crocus sativus. Apocarotenoids like crocin, picrocrocin and safranal are restricted to genus Crocus and are synthesized by oxidative cleavage of zeaxanthin followed by glycosylation reactions. In Crocus sativus, these apocarotenoids are synthesized in stigma part of the flower in developmentally regulated manner. Most of the genes of apocarotenoid pathway are known, however, the mechanism that regulates its tissue and stage specific biosynthesis remains elusive. MYB family was identified as the largest transcription factor family from Crocus transciptome which indicated its possible role in apocarotenoid regulation besides regulating other metabolic pathways. Towards this, we started with identification of 150 MYB genes from Crocus transcriptome databases. The phylogenetic analysis of Crocus MYB genes divided them into 27 clusters. Domain analysis resulted in identification of four groups of MYBs depending upon the number of R repeats present. Expression profiling indicated that 12 MYBs are upregulated in stigma out of which expression of four genes CstMYB1, CstMYB14, CstMYB16 and CstMYB1R2 correlated with crocin accumulation. Transient overexpression of two nuclear localized MYB genes (CstMYB1 and CstMYB1R2) in Crocus confirmed their role in regulating carotenoid metabolism. Yeast-one-hybrid confirmed that CstMYB1 binds to carotenoid cleavage dioxygenase 2 (CCD2) promoter while CstMYB1R2 binds to phytoene synthase (PSY) and CCD2 promoters. Overall, our study established that CstMYB1 and CstMYB1R2 regulate apocarotenoid biosynthesis by directly binding to promoters of pathway genes.


Asunto(s)
Carotenoides/metabolismo , Crocus/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Factores de Transcripción/genética , Secuencia de Bases , Núcleo Celular/metabolismo , Perfilación de la Expresión Génica , Filogenia , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...