Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 14(5): 140, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689736

RESUMEN

This research paper investigates the variability in seed oil content (SOC) in Indian mustard (Brassica juncea L.) under terminal heat stress (THS) conditions. A genetic stock of 488 genotypes of B. juncea was evaluated over two years and grouped into five classes based on the reduction in oil content under THS compared to normal sown crop. Based on heat susceptibility index (HSI), a diverse panel of 96 genotypes was selected and evaluated under THS. Twenty-two heat-tolerant donor genotypes were identified, including introgression lines derived from B. tournefortii, B. carinata and Erucastrum cardaminoides. This study is the first to report on marker-trait associations for SOC in B. juncea under THS using a GWAS approach. Furthermore, candidate genes associated with abiotic stress tolerance and lipid metabolism were identified near the significant SNPs, emphasizing their role in SOC regulation under stress. Notable candidate genes include BjuA003240 (encoding for alcohol-forming fatty acyl-CoA reductase), BjuA003242 (involving in lipid biosynthesis), BjuA003244 (associated with mitochondrial functions and stress tolerance), and BjuA003245 (related to MYB transcription factors regulating lipid biosynthesis). This study provides valuable insights into the genetic basis of SOC variation under THS in B. juncea, highlighting potential breeding targets for improved heat stress resilience in Indian mustard cultivation. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03985-w.

2.
3 Biotech ; 14(1): 14, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111612

RESUMEN

Doubled haploid (DH) breeding is a powerful technique to ensure global food security via accelerated crop improvement. DH can be produced in planta by employing haploid inducer stock (HIS). Widely used HIS in maize is known to be governed by ZmPLA, ZmDMP, ZmPLD3, and ZmPOD65 genes. To develop such HIS in rice and wheat, we have identified putative orthologs of these genes using in silico approaches. The OsPLD1; TaPLD1, and OsPOD6; TaPOD8 were identified as putative orthologs of ZmPLD3 and ZmPOD65 in rice and wheat, respectively. Despite being closely related to ZmPLD3, OsPLD1 and TaPLD1 have shown higher anther-specific expression. Similarly, OsPOD6 and TaPOD8 were found closely related to the ZmPOD65 based on both phylogenetic and expression analysis. However, unlike ZmPLD3 and ZmPOD65, two ZmDMP orthologs have been found for each crop. OsDMP1 and OsDMP2 in rice and TaDMP3 and TaDMP13 in wheat have shown similarity to ZmDMP in terms of both sequence and expression pattern. Furthermore, analogs to maize DMP proteins, these genes possess four transmembrane helices making them best suited to be regarded as ZmDMP orthologs. Modifying these predicted orthologous genes by CRISPR/Cas9-based genome editing can produce a highly efficient HIS in both rice and wheat. Besides revealing the genetic mechanism of haploid induction, the development of HIS would advance the genetic improvement of these crops. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03857-9.

3.
Front Plant Sci ; 14: 1174266, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324704

RESUMEN

Rice is a high-silica (SiO2·nH2O) accumulator. Silicon (Si) is designated as a beneficial element associated with multiple positive effects on crops. However, the presence of high silica content is detrimental to rice straw management, hampering its use as animal feed and as raw material in multiple industries. Rice straw management is a serious concern in north-western India, and it is eventually burned in situ by farmers, contributing to air pollution. A practical solution could lie in reducing the silica content in rice while also attaining sound plant growth. A set of 258 Oryza nivara accessions along with 25 cultivated varieties of Oryza sativa was used to assess the variation in straw silica content using the molybdenum blue colorimetry method. A large continuous variation was observed for straw silica content in O. nivara accessions, ranging from 5.08% to 16%, while it varied from 6.18% to 15.81% in the cultivated varieties. The O. nivara accessions containing 43%-54% lower straw silica content than the currently prominent cultivated varieties in the region were identified. A set of 22,528 high-quality single nucleotide polymorphisms (SNPs) among 258 O. nivara accessions was used for estimating population structure and genome-wide association studies (GWAS). A weak population structure with 59% admixtures was identified among O. nivara accessions. Further, multi-locus GWAS revealed the presence of 14 marker-trait associations (MTAs) for straw silica content, with six of them co-localizing with previously reported quantitative trait loci (QTL). Twelve out of 14 MTAs showed statistically significant allelic differences. Thorough candidate gene analyses revealed the presence of promising candidate genes, including those encoding the ATP-binding cassette (ABC) transporter, Casparian thickening, multi-drug and toxin extrusion (MATE) protein, F-box, and MYB-transcription factors. Besides, ortho-QTLs among rice and maize genomes were identified, which could open ways for further genetic analysis of this trait. The findings of the study could aid in further understanding and characterizing genes for Si transport and regulation in the plant body. The donors carrying the alleles for lower straw silica content can be used in further marker-assisted breeding programs to develop rice varieties with lower silica content and higher yield potential.

4.
Phytopathology ; 113(5): 824-835, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37352896

RESUMEN

Begomoviruses, viz. squash leaf curl China virus and tomato leaf curl New Delhi virus causative diseases are major concerns of quantitative and qualitative losses in pumpkin (Cucurbita moschata) worldwide. Punjab Agricultural University (PAU) in India has identified a resistant source (PVR-1343) against mixed infection (MI-Sq/To) of these begomoviruses. Introgression of resistance in diverse genetic backgrounds requires the identification of quantitative trait loci (QTLs) associated with MI-Sq/To resistance. Phenotyping of 229 F2:3 progenies derived from the PVR-1343 × P-135 cross revealed digenic recessive inheritance against MI-Sq/To resistance in PVR-1343. To identify the genomic region, resistant and susceptible bulks were subjected to whole-genome resequencing along with their parents. The whole-genome resequence analysis of parents and bulks using QTLseq/QTLseqr approaches identified an overlapping 1.52 Mb region on chromosome 7 (qMI-Sq/To7.1), while chromosomal region spanning 0.87 Mb on chromosome17 (qMI-Sq/To17.1) was additionally identified by QTLseqr. However, the highest peak value on chromosome 7 with three algorithms {G', ∆(SNP-index) and -log10 (P value)} highlighted the major contribution of qMI-Sq/To7.1 in MI-Sq/To resistance. Nine polymorphic SNPs identified within the highly significant qMI-Sq/To7.1 region were converted into KASP markers. KASP genotyping of F2 individuals narrowed down the qMI-Sq/To7.1 interval to 103 kb region flanked by two markers, Cmo3914729 and Cmo4018182, which contained 16 annotated genes and accounted for 59.84% of phenotypic variation. The Cmo4018182 KASP marker accurately predicted disease reaction in 91% of diverse Cucurbita genotypes and showed nonsynonym substitutions in the coding region of putative candidate SYNTAXIN-121 gene. These findings pave the way for marker-assisted breeding and elucidating the underlying mechanism of begomovirus resistance in C. moschata.


Asunto(s)
Begomovirus , Cucurbita , Sitios de Carácter Cuantitativo/genética , Mapeo Cromosómico , Cucurbita/genética , Begomovirus/genética , Enfermedades de las Plantas/genética , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Resistencia a la Enfermedad/genética
5.
Front Plant Sci ; 14: 1087023, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875618

RESUMEN

Mukaku Kishu ('MK'), a small sized mandarin, is an important source of seedlessness in citrus breeding. Identification and mapping the gene(s) governing 'MK' seedlessness will expedite seedless cultivar development. In this study, two 'MK'-derived mapping populations- LB8-9 Sugar Belle® ('SB') × 'MK' (N=97) and Daisy ('D') × 'MK' (N=68) were genotyped using an Axiom_Citrus56 Array encompassing 58,433 SNP probe sets, and population specific male and female parent linkage maps were constructed. The parental maps of each population were integrated to produce sub-composite maps, which were further merged to develop a consensus linkage map. All the parental maps (except 'MK_D') had nine major linkage groups, and contained 930 ('SB'), 810 ('MK_SB'), 776 ('D') and 707 ('MK_D') SNPs. The linkage maps displayed 96.9 ('MK_D') to 98.5% ('SB') chromosomal synteny with the reference Clementine genome. The consensus map was comprised of 2588 markers including a phenotypic seedless (Fs)-locus and spanned a genetic distance of 1406.84 cM, with an average marker distance of 0.54 cM, which is substantially lower than the reference Clementine map. For the phenotypic Fs-locus, the distribution of seedy and seedless progenies in both 'SB' × 'MK' (55:42, χ2 = 1.74) and 'D' × 'MK' populations (33:35, χ2 = 0.06) followed a test cross pattern. The Fs-locus mapped on chromosome 5 with SNP marker 'AX-160417325' at 7.4 cM in 'MK_SB' map and between two SNP markers 'AX-160536283' and 'AX-160906995' at a distance of 2.4 and 4.9 cM, respectively in 'MK_D' map. The SNPs 'AX-160417325' and 'AX-160536283' correctly predicted seedlessness of 25-91.9% progenies in this study. Based on the alignment of flanking SNP markers to the Clementine reference genome, the candidate gene for seedlessness hovered in a ~ 6.0 Mb region between 3.97 Mb (AX-160906995) to 10.00 Mb (AX-160536283). This region has 131 genes of which 13 genes (belonging to seven gene families) reportedly express in seed coat or developing embryo. The findings of the study will prove helpful in directing future research for fine mapping this region and eventually underpinning the exact causative gene governing seedlessness in 'MK'.

6.
Theor Appl Genet ; 135(12): 4495-4506, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36271056

RESUMEN

KEY MESSAGE: Here, we report identification of a large effect QTL conferring Mungbean yellow mosaic India virus resistance introgressed from ricebean in blackgram variety Mash114. The tightly linked KASP markers would assist in marker-assisted-transfer of this region into Vigna species infected by MYMIV. Until recently, precise location of genes and marker-assisted selection was long thought in legumes such as blackgram due to lack of dense molecular maps. However, advances in next-generation sequencing based on high-throughput genotyping technologies such as QTL-seq have revolutionized trait mapping in marker-orphan crops. Using QTL-seq approach, we have identified a large-effect QTL for resistance to Mungbean yellow mosaic India virus (MYMIV) in blackgram variety Mash114. MYMIV is devastating disease responsible for huge yield losses in blackgram, greengram and other legumes. Mash114 showed consistent and high level of resistance to MYMIV since last nine years. Whole genome re-sequencing of MYMIV-resistant and susceptible bulks derived from RILs of cross KUG253 X Mash114 identified a large-effect QTL (qMYMIV6.1.1) spanning 3.4 Mb on chromosome 6 explaining 70% of total phenotypic variation. This region was further identified as an inter-specific introgression from ricebean. Linkage mapping using KASP markers developed from potent candidate genes involved in virus resistance identified the 500 kb genomic region equaling 1.9 cM on genetic map linked with MYMIV. The three KASP markers closely associated with MYMIV originated from serine threonine kinase, UBE2D2 and BAK1/BRI1-ASSOCIATED RECEPTOR KINASE genes. These KASPs can be used for marker-assisted transfer of introgressed segment into suitable backgrounds of Vigna species.


Asunto(s)
Begomovirus , Fabaceae , Vigna , Vigna/genética , Enfermedades de las Plantas/genética , Fabaceae/genética
7.
Physiol Mol Biol Plants ; 28(7): 1437-1452, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36051229

RESUMEN

Drought is a major abiotic stress that drastically reduces chickpea yields. The present study was aimed to identify drought-responsive traits in chickpea by screening a recombinant inbred line population derived from an inter-specific cross between drought cultivar of GPF2 (C. arietinum L.) and drought sensitive accession of ILWC292 (C. reticulatum), at two locations in India. Twenty-one traits, including twelve morphological and physiological traits and nine root-related traits were measured under rainfed (drought-stress) and irrigated conditions (no-stress). High genotypic variation was observed among RILs for yield and root traits indicated that selection in these germplasms would be useful in achieving genetic progress. Both correlation and principal component analysis revealed that plant height, number of pods per plant, biomass, 100-seed weight, harvest index, membrane permeability index, and relative leaf water content were significantly correlated with yield under both irrigated and drought stress environments. Root length had significant positive correlations with all root-related traits except root length density in drought-stressed plants. Path analysis and multiple and stepwise regression analyses showed that number of pods per plant, biomass, and harvest index were major contributors to yield under drought stress conditions. Thus, a holistic approach across these analyses identified number of pods per plant, biomass, harvest index, and root length as key traits for improving chickpea yield through indirect selection for developing drought-tolerant cultivars. Overall, on the basis of yield components morphological and root traits, a total of 15 promising RILs were identified for their use in chickpea breeding programs for developing drought tolerant cultivars. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01218-z.

8.
Front Genet ; 13: 953898, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36061197

RESUMEN

Chickpea yield is severely affected by drought stress, which is a complex quantitative trait regulated by multiple small-effect genes. Identifying genomic regions associated with drought tolerance component traits may increase our understanding of drought tolerance mechanisms and assist in the development of drought-tolerant varieties. Here, a total of 187 F8 recombinant inbred lines (RILs) developed from an interspecific cross between drought-tolerant genotype GPF 2 (Cicer arietinum) and drought-sensitive accession ILWC 292 (C. reticulatum) were evaluated to identify quantitative trait loci (QTLs) associated with drought tolerance component traits. A total of 21 traits, including 12 morpho-physiological traits and nine root-related traits, were studied under rainfed and irrigated conditions. Composite interval mapping identified 31 QTLs at Ludhiana and 23 QTLs at Faridkot locations for morphological and physiological traits, and seven QTLs were identified for root-related traits. QTL analysis identified eight consensus QTLs for six traits and five QTL clusters containing QTLs for multiple traits on linkage groups CaLG04 and CaLG06. The identified major QTLs and genomic regions associated with drought tolerance component traits can be introgressed into elite cultivars using genomics-assisted breeding to enhance drought tolerance in chickpea.

9.
Front Plant Sci ; 13: 948106, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035714

RESUMEN

The hull-less pumpkin (Cucurbita pepo) seed does not require de-hulling before use for human consumption, as a result highly preferred by the oil, nut, and baking industries. In hull-less seeds, a single recessive gene is responsible for the absence of outer thick seed coat layers; however, the genomic region and gene(s) controlling the trait are unclear to date. In this study, four crosses attempted to derive F2 and backcross populations confirmed the single recessive gene inheritance of hull-less seed trait in populations adapted to the sub-tropical climate. The candidate genomic region for hull-less seed trait was identified through the BSA-QTLseq approach using bulks of F2:3 progenies from a cross of HP111 (hulled) and HLP36 (hull-less). A novel genomic region on chromosome 12 ranging from 1.80 to 3.86 Mb was associated with the hull-less seed trait. The re-sequencing data identified a total of 396 SNPs within this region and eight were successfully converted into polymorphic KASP assays. The genotyping of segregating F2 (n = 160) with polymorphic KASP assays resulted in a 40.3 cM partial linkage map and identified Cp_3430407 (10 cM) and Cp_3498687 (16.1 cM) as flanking markers for hull-less locus (Cphl-1). These flanking markers correspond to the 68.28 kb region in the reference genome, and the marker, Cp_3430407 successfully predicted the genotype in 93.33% of the C. pepo hull-less germplasm lines, thus can be used for marker-assisted selection in parents polymorphic for the hull-less seed trait. The Cphl-1-linked genomic region (2.06 Mb) encompasses a total of 182 genes, including secondary cell wall and lignin biosynthesis-related transcriptional factors viz., "NAC" (Cp4.1LG12g04350) and "MYB" (Cp4.1LG12g03120). These genes were differentially expressed in the seeds of hulled and hull-less genotypes, and therefore could be the potential candidate genes governing the hull-less seed trait in pumpkin.

10.
Front Genet ; 13: 871833, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774507

RESUMEN

Root-knot nematode (Meloidogyne graminicola) is one of the emerging threats to rice production worldwide that causes substantial yield reductions. There is a progressive shift of the cropping system from traditional transplanting to direct-seeded water-saving rice production that favored the development of M. graminicola. Scouting and deploying new resistance genes is an economical approach to managing the root-knot nematodes. Here, we report that the inheritance of root-knot nematode resistance in Oryza glaberrima acc. IRGC102206 is governed by a single dominant gene. Traditional mapping coupled with BSA-seq is used to map nematode resistance gene(s) using the BC1F1 population derived from a cross of O. sativa cv. PR121 (S) and O. glaberrima acc. IRGC102206 (R). One major novel genomic region spanning a 3.0-Mb interval on chromosome 6 and two minor QTLs on chromosomes 2 and 4 are the potential genomic regions associated with rice root-knot nematode resistance. Within the QTL regions, 19 putative candidate genes contain 81 non-synonymous variants. The detected major candidate region could be fine mapped to accelerate marker-assisted breeding for root-knot nematode resistance in rice.

11.
Rice (N Y) ; 15(1): 37, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35819660

RESUMEN

Being one of the most important staple dietary constituents globally, genetic enhancement of cultivated rice for yield, agronomically important traits is of substantial importance. Even though the climatic factors and crop management practices impact complex traits like yield immensely, the contribution of variation by underlying genetic factors surpasses them all. Previous studies have highlighted the importance of utilizing exotic germplasm, landraces in enhancing the diversity of gene pool, leading to better selections and thus superior cultivars. Thus, to fully exploit the potential of progenitor of Asian cultivated rice for productivity related traits, genome wide association study (GWAS) for seven agronomically important traits was conducted on a panel of 346 O. rufipogon accessions using a set of 15,083 high-quality single nucleotide polymorphic markers. The phenotypic data analysis indicated large continuous variation for all the traits under study, with a significant negative correlation observed between grain parameters and agronomic parameters like plant height, culm thickness. The presence of 74.28% admixtures in the panel as revealed by investigating population structure indicated the panel to be very poorly genetically differentiated, with rapid LD decay. The genome-wide association analyses revealed a total of 47 strong MTAs with 19 SNPs located in/close to previously reported QTL/genic regions providing a positive analytic proof for our studies. The allelic differences of significant MTAs were found to be statistically significant at 34 genomic regions. A total of 51 O. rufipogon accessions harboured combination of superior alleles and thus serve as potential candidates for accelerating rice breeding programs. The present study identified 27 novel SNPs to be significantly associated with different traits. Allelic differences between cultivated and wild rice at significant MTAs determined superior alleles to be absent at 12 positions implying substantial scope of improvement by their targeted introgression into cultivars. Introgression of novel significant genomic regions into breeder's pool would broaden the genetic base of cultivated rice, thus making the crop more resilient.

12.
J Genet ; 1012022.
Artículo en Inglés | MEDLINE | ID: mdl-35652206

RESUMEN

Cotton leaf curl disease (CLCuD), caused by a geminivirus complex, is the most serious disease of upland cotton in northwest India and Pakistan. It results in substantial losses in cotton yield and fibre quality. Due to continuous appearance of new viral strains, all the established CLCuD resistant stocks, extant and obsolete cultivars of upland cotton have become susceptible. Therefore, it became crucial to explore the novel sources of CLCuD resistance, as development of CLCuD resistant varieties is the most practical approach to manage this menace. Here, for the first time, we report introgression and mapping of CLCuD resistance from a 'synthetic cotton polyploid' to upland cotton. A backcross population (synthetic polyploid / Gossypium hirsutum Acc. PIL 43/G. hirsutum Acc. PIL 43) was developed for studying inheritance and mapping of CLCuD resistance. Dominance of CLCuD resistance was observed over its susceptibility. Two dominant genes were found to confer resistance to CLCuD. Molecular analysis through genotyping-by-sequencing revealed that chromosomes A01 and D07 harboured one CLCuD resistance gene each.


Asunto(s)
Gossypium , Enfermedades de las Plantas , Gossypium/genética , India , Pakistán , Enfermedades de las Plantas/genética , Poliploidía
13.
Physiol Mol Biol Plants ; 27(9): 1933-1951, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34629771

RESUMEN

Genetic improvement of seed yield per plant (SY) is one of the major objectives in Brassica napus breeding programme. SY, being a complex quantitative trait is directly and indirectly influenced by yield-component traits such as siliqua length (SL), number of seeds per siliqua (NSS), and thousand seed weight (TSW). Therefore, concurrent improvement in SL, NSS and TSW can lead to higher SY in B. napus. This study was conducted to identify significant SNPs and putative candidate genes governing SY and its component traits (SL, NSS, TSW). All these traits were evaluated in a diverse set of 200 genotypes representing diversity from wide geographical locations. Of these, a set of 125 genotypes were chosen based on pedigree diversity and multi-location trait variation for genotyping by sequencing (GBS). Best linear unbiased predictors (BLUPs) of all the traits were used for genome-wide association study (GWAS) with 85,126 SNPs obtained from GBS. A total of 16, 18, 27 and 18 SNPs were found to be significantly associated for SL, NSS, TSW and SY respectively. Based on linkage disequilibrium decay analysis, 150 kb genomic region flanking the SNP was used for the identification of underlying candidate genes for each test trait. Important candidate genes involved in phytohormone signaling (WAT1, OSR1, ARR8, CKX1, REM7, REM9, BG1) and seed storage proteins (Cruciferin) were found to have significant influence on seed weight and yield. Genes involved in sexual reproduction and fertilization (PERK7, PERK13, PRK3, GATA15, NFD6) were found to determine the number of seeds per siliqua. Several genes found in this study namely ATS3A, CKX1, SPL2, SPL6, SPL9, WAT1 showed pleiotropic effect with yield component traits. Significant SNPs and putative candidate genes identified for SL, NSS, TSW and SY could be used in marker-assisted breeding for improvement of crop yield in B. napus. Genotypes identified with high SL, NSS, TSW and SY could serve as donors in crop improvement programs in B. napus. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01060-9.

14.
Plant Genome ; 14(3): e20140, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34498798

RESUMEN

Plants produce diverse secondary metabolites in response to different environmental cues including pathogens. The modification of secondary metabolites, including acylation, modulates their biological activity, stability, transport, and localization. A plant-specific BAHD-acyltransferase (BAHD-AT) gene family members catalyze the acylation of secondary metabolites. Here we characterized the rice (Oryza sativa L.) BAHD-ATs at the genome-wide level and endeavor to define their plausible role in the tolerance against Rhizoctonia solani AG1-IA. We identified a total of 85 rice OsBAHD-AT genes and classified them into five canonical clades based on their phylogenetic relationship with characterized BAHD-ATs from other plant species. The time-course RNA sequencing (RNA-seq) analysis of OsBAHD-AT genes and qualitative real-time polymerase chain reaction (qRT-PCR) validation showed higher expression in sheath blight susceptible rice genotype. Furthermore, the DNA methylation analysis revealed higher hypomethylation of OsBAHD-AT genes that corresponds to their higher expression in susceptible rice genotype, indicating epigenetic regulation of OsBAHD-AT genes in response to R. solani AG1-IA inoculation. The results shown here indicate that BAHD-ATs may have a negative role in rice tolerance against R. solani AG1-IA possibly mediated through the brassinosteroid (BR) signaling pathway. Altogether, the present analysis suggests the putative functions of several OsBAHD-AT genes, which will provide a blueprint for their functional characterization and to understand the rice-R. solani AG1-IA interaction.


Asunto(s)
Oryza , Aciltransferasas/genética , Epigénesis Genética , Oryza/genética , Filogenia , Enfermedades de las Plantas/genética , Rhizoctonia
15.
Breed Sci ; 71(2): 229-239, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34377071

RESUMEN

Ascochyta blight (AB) and botrytis grey mould (BGM) are the most devastating fungal diseases of chickpea worldwide. The wild relative of chickpea, C. reticulatum acc. ILWC 292 was found resistant to BGM whereas, GPF2 (Cicer arietinum L.) is resistant to AB. A total of 187 F8 Recombinant Inbred Lines (RILs) developed from an inter-specific cross of GPF2 × C. reticulatum acc. ILWC 292 were used to identify quantitative trait loci (QTLs) responsible for resistance to AB and BGM. RILs along with parents were evaluated under artificial epiphytotic field/laboratory conditions for two years. Highly significant differences (P < 0.001) were observed for reaction to both pathogens in both years. Parents and RILs were genotyped-by-sequencing to identify genome wide single nucleotide polymorphism (SNPs). A total of 1365 filtered and parental polymorphic SNPs were used for linkage map construction, of which, 673 SNPs were arranged on eight linkage groups. Composite interval mapping revealed three QTLs for AB and four QTLs for BGM resistance. Out of which, two QTLs for AB and three QTLs for BGM were consistent in both years. These QTLs can be targeted for further fine mapping for deployment of resistance to AB and BGM in elite chickpea cultivars using marker-assisted-selection.

16.
PLoS One ; 16(8): e0254957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34370732

RESUMEN

Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits. The pooled ANOVA for both locations for the traits namely days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), pods per plant (NPP), biomass (BIO), grain yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC) and pollen viability (PV)) showed a highly significant difference in RILs. The phenotyping data coupled with the genetic map comprising of 1365 ddRAD-Seq based SNP markers were used for identifying the QTLs for heat tolerance. Composite interval mapping provided a total of 28 and 23 QTLs, respectively at Ludhiana and Faridkot locations. Of these, 13 consensus QTLs for DG, DFI, DFF, DHF, PH, YLD, and MPI have been identified at both locations. Four QTL clusters containing QTLs for multiple traits were identified on the same genomic region at both locations. Stable QTLs for days to flowering can be one of the major factors for providing heat tolerance as early flowering has an advantage of more seed setting due to a comparatively longer reproductive period. Identified QTLs can be used in genomics-assisted breeding to develop heat stress-tolerant high yielding chickpea cultivars.


Asunto(s)
Cicer/genética , Endogamia , Fitomejoramiento , Sitios de Carácter Cuantitativo/genética , Recombinación Genética/genética , Termotolerancia/genética , Respuesta al Choque Térmico/genética , India , Oportunidad Relativa , Fenotipo , Reproducción/genética , Temperatura
17.
J Genet ; 1002021.
Artículo en Inglés | MEDLINE | ID: mdl-34282731

RESUMEN

The gene-for-gene relationship of host-pathogen interaction explained by H. H. Flor in mid of the 20th century set a milestone in understanding the biochemical and genetic basis of plant diseases and several components involved in plant-pathogen interactions. It highlighted the importance of accomplishing differential sets and understanding the pathogen population structure, it further led to the identification and cloning of several resistance (R) genes in plants. These R genes have been deployed and altered for fighting against diseases in a large number of crops using various conventional approaches and biotechnological tools. Identification of R genes and their corresponding Avr genes in many cases played a significant role in understanding of R-Avr gene interactions. Rapid cloning of R genes and editing of susceptible R genes are the other avenues that have broadened the horizon of utilizing R genes in crop improvement programmes. Further, combining R genes with quantitative disease resistance genes has paved the way to develop durable resistance in cultivars. The recent advances in genetics, genomics, bioinformatics and other OMICS tools are now providing greater prospects for deeper understanding of host-pathogen interaction.


Asunto(s)
Resistencia a la Enfermedad/genética , Evolución Molecular , Genes prv/genética , Enfermedades de las Plantas/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Genómica , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/microbiología
18.
Physiol Mol Biol Plants ; 27(4): 747-767, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33967460

RESUMEN

Heat is a major abiotic stress that drastically reduces chickpea yield. This study aimed to identify heat-responsive traits to sustain crop productivity by screening a recombinant inbred line (RILs) population at two locations in India (Ludhiana and Faridkot). The RIL population was derived from an inter-specific cross between heat-tolerant genotype GPF 2 (C. arietinum L.) and heat sensitive accession ILWC 292 (C. reticulatum). The pooled analysis of variance showed highly significant differences for all the traits in RILs and most of the traits were significantly affected by heat stress at both locations. High values of genotypic coefficient of variation (19.52-38.53%), phenotypic coefficient of variation (20.29-39.85%), heritability (92.50-93.90%), and genetic advance as a percentage of mean (38.68-76.74%) have been observed for plant height, number of pods per plant, biomass, yield, and hundred seed weight across the heat stress environments. Association studies and principal component analysis showed a significant positive correlation of plant height, number of pods per plant, biomass, hundred seed weight, harvest index, relative leaf water content, and pollen viability with yield under both timely-sown and late-sown conditions. Path analysis revealed that biomass followed by harvest index was the major contributor to yield among the environments. Both step-wise and multiple regression analyses concluded that number of pods per plant, biomass and harvest index consistently showed high level of contribution to the total variation in yield under both timely-sown and late-sown conditions. Thus, the holistic approach of these analyses illustrated that the promising traits provide a framework for developing heat-tolerant cultivars in chickpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00977-5.

19.
Theor Appl Genet ; 133(3): 689-705, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31811315

RESUMEN

KEY MESSAGE: A novel recessive bacterial blight resistance locus designated as a xa-45(t) was identified from Oryza glaberrima accession IRGC 102600B, transferred to O. sativa and mapped to the long arm of chromosome 8 using ddRAD sequencing approach. The identified QTL spans 80 kb region on Nipponbare reference genome IRGSP-1.0 and contains 9 candidate genes. An STS marker developed from the locus LOC_Os08g42410 was found co-segregating with the trait and will be useful for marker-assisted transfer of this recessive resistance gene in breeding programs. Bacterial blight, caused by Xanthomonas oryzae pv. oryzae, is one of the major constraints of rice productivity in Southeast Asia. In spite of having 44 bacterial blight resistance genes from cultivated rice and wild species, the durability of resistance is always at stake due to the continually evolving nature of the pathogen and lack of suitable chemical control. Here, we report high-resolution genetic mapping of a novel bacterial blight resistance gene tentatively designated as a xa-45(t) from an introgression line derived from Oryza glaberrima accession IRGC 102600B. This introgression line was crossed with the susceptible rice indica cultivar cv. Pusa 44 to generate F2 and F2:3 populations for inheritance and mapping studies. The inheritance studies revealed the presence of single recessive locus controlling resistance to the Xanthomonas pathotype seven. A high-density linkage map was constructed using double-digest restriction-associated DNA sequencing of 96 F2 populations along with the parents. The QTL mapping identified a major locus on the long arm of rice chromosome 8 with a LOD score of 33.22 between the SNP markers C8.26737175 and C8.26818765. The peak marker, C8.26810477, explains 49.8% of the total phenotypic variance and was positioned at 202.90 cM on the linkage map. This major locus spans 80 kb region on Nipponbare reference genome IRGSP-1.0 and contains 9 candidate genes. A co-segregating STS marker was developed from the LOC_Os08g42410 for efficient transfer of this novel gene to elite cultivars.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Oryza/genética , Enfermedades de las Plantas/genética , Mapeo Cromosómico , Cromosomas de las Plantas , Cruzamientos Genéticos , Genes Recesivos , Introgresión Genética , Ligamiento Genético , Marcadores Genéticos , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Xanthomonas/patogenicidad
20.
Theor Appl Genet ; 131(5): 1163-1171, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29476225

RESUMEN

KEY MESSAGE: A BPH-resistant locus designated as Bph34 identified in Oryza nivara acc. IRGC104646 on long arm of chromosome 4 using high-resolution mapping with 50 K SNP chip. BPH resistance contributed by locus showed dominant inheritance in F2 and F3. The Bph34 locus is 91 kb in size and contains 11 candidate genes. In addition to SNP markers, SSR markers, RM16994 and RM17007 co-segregated with the BPH resistance. These two SSR markers can facilitate marker-assisted transfer of the Bph34 locus into elite rice cultivars in all labs. Brown planthopper (BPH, Nilaparvata lugen Stål) is one of the most destructive insects of rice (Oryza sativa L.) causing significant yield losses annually. Exploiting host plant resistance to BPH and incorporating resistant genes in susceptible commercial cultivars is economical and environmentally friendly approach to manage this pest. Here, we report high-resolution mapping of a novel genetic locus for resistance to BPH, designated as Bph34 on long arm of rice chromosome 4. The locus was mapped using an interspecific F2 population derived from a cross between susceptible indica cultivar PR122 and BPH-resistant wild species, O. nivara acc. IRGC104646. Inheritance studies performed using F2 and F2:3 populations revealed the presence of single dominant gene. Construction of high-density linkage map using 50 K SNP chip (OsSNPnks) followed by QTL mapping identified single major locus at 28.8 LOD score between SNP markers, AX-95952039 and AX-95921548. The major locus contributing resistance to BPH designated as Bph34 and explained 68.3% of total phenotypic variance. The Bph34 locus is 91 Kb in size on Nipponbare reference genome-IRGSP-1.0 and contains 11 candidate genes. In addition to associated SNP markers, two SSR markers, RM16994 and RM17007, also co-segregated with the Bph34 which can be used efficiently for markers assisted transfer into elite rice cultivars across the labs.


Asunto(s)
Hemípteros , Herbivoria , Oryza/genética , Animales , Mapeo Cromosómico , Cruzamientos Genéticos , Genes de Plantas , Ligamiento Genético , Sitios Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...