Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 244: 120469, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37634459

RESUMEN

Wastewater-based surveillance (WBS) has been established as a powerful tool that can guide health policy at multiple levels of government. However, this approach has not been well assessed at more granular scales, including large work sites such as University campuses. Between August 2021 and April 2022, we explored the occurrence of SARS-CoV-2 RNA in wastewater using qPCR assays from multiple complimentary sewer catchments and residential buildings spanning the University of Calgary's campus and how this compared to levels from the municipal wastewater treatment plant servicing the campus. Real-time contact tracing data was used to evaluate an association between wastewater SARS-CoV-2 burden and clinically confirmed cases and to assess the potential of WBS as a tool for disease monitoring across worksites. Concentrations of wastewater SARS-CoV-2 N1 and N2 RNA varied significantly across six sampling sites - regardless of several normalization strategies - with certain catchments consistently demonstrating values 1-2 orders higher than the others. Relative to clinical cases identified in specific sewersheds, WBS provided one-week leading indicator. Additionally, our comprehensive monitoring strategy enabled an estimation of the total burden of SARS-CoV-2 for the campus per capita, which was significantly lower than the surrounding community (p≤0.001). Allele-specific qPCR assays confirmed that variants across campus were representative of the community at large, and at no time did emerging variants first debut on campus. This study demonstrates how WBS can be efficiently applied to locate hotspots of disease activity at a very granular scale, and predict disease burden across large, complex worksites.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales , ARN Viral
3.
mSystems ; 8(2): e0088422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36786580

RESUMEN

Petroleum reservoirs within the deep biosphere are extreme environments inhabited by diverse microbial communities and represent biogeochemical hot spots in the subsurface. Despite the ecological and industrial importance of oil reservoir microbiomes, systematic study of core microbial taxa and their associated genomic attributes spanning different environmental conditions is limited. Here, we compile and compare 343 16S rRNA gene amplicon libraries and 25 shotgun metagenomic libraries from oil reservoirs in different parts of the world to test for the presence of core taxa and functions. These oil reservoir libraries do not share any core taxa at the species, genus, family, or order levels, and Gammaproteobacteria was the only taxonomic class detected in all samples. Instead, taxonomic composition varies among reservoirs with different physicochemical characteristics and with geographic distance highlighting environmental selection and biogeography in these deep biosphere habitats. Gene-centric metagenomic analysis reveals a functional core of metabolic pathways including carbon acquisition and energy-yielding strategies consistent with biogeochemical cycling in other subsurface environments. Genes for anaerobic hydrocarbon degradation are observed in a subset of the samples and are therefore not considered to represent core functions in oil reservoirs despite hydrocarbons representing an abundant source of carbon in these deep biosphere settings. Overall, this work reveals common and divergent features of oil reservoir microbiomes that are shaped by and responsive to environmental factors, highlighting controls on subsurface microbial community assembly. IMPORTANCE This comprehensive analysis showcases how environmental selection and geographic distance influence the microbiome of subsurface petroleum reservoirs. We reveal substantial differences in the taxonomy of the inhabiting microbes but shared metabolic function between reservoirs with different in situ temperatures and between reservoirs separated by large distances. The study helps understand and advance the field of deep biosphere science by providing an ecological framework and footing for geologists, chemists, and microbiologists studying these habitats to elucidate major controls on deep biosphere microbial ecology.


Asunto(s)
Microbiota , Petróleo , Petróleo/metabolismo , ARN Ribosómico 16S/genética , Yacimiento de Petróleo y Gas , Microbiota/genética , Carbono
4.
J Med Virol ; 95(2): e28442, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36579780

RESUMEN

Wastewater-based SARS-CoV-2 surveillance enables unbiased and comprehensive monitoring of defined sewersheds. We performed real-time monitoring of hospital wastewater that differentiated Delta and Omicron variants within total SARS-CoV-2-RNA, enabling correlation to COVID-19 cases from three tertiary-care facilities with >2100 inpatient beds in Calgary, Canada. RNA was extracted from hospital wastewater between August/2021 and January/2022, and SARS-CoV-2 quantified using RT-qPCR. Assays targeting R203M and R203K/G204R established the proportional abundance of Delta and Omicron, respectively. Total and variant-specific SARS-CoV-2 in wastewater was compared to data for variant specific COVID-19 hospitalizations, hospital-acquired infections, and outbreaks. Ninety-six percent (188/196) of wastewater samples were SARS-CoV-2 positive. Total SARS-CoV-2 RNA levels in wastewater increased in tandem with total prevalent cases (Delta plus Omicron). Variant-specific assessments showed this increase to be mainly driven by Omicron. Hospital-acquired cases of COVID-19 were associated with large spikes in wastewater SARS-CoV-2 and levels were significantly increased during outbreaks relative to nonoutbreak periods for total SARS-CoV2, Delta and Omicron. SARS-CoV-2 in hospital wastewater was significantly higher during the Omicron-wave irrespective of outbreaks. Wastewater-based monitoring of SARS-CoV-2 and its variants represents a novel tool for passive COVID-19 infection surveillance, case identification, containment, and potentially to mitigate viral spread in hospitals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , ARN Viral , Aguas Residuales , Centros de Atención Terciaria , Brotes de Enfermedades
5.
Sci Adv ; 8(34): eabn3485, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36026445

RESUMEN

The deep biosphere is the largest microbial habitat on Earth and features abundant bacterial endospores. Whereas dormancy and survival at theoretical energy minima are hallmarks of microbial physiology in the subsurface, ecological processes such as dispersal and selection in the deep biosphere remain poorly understood. We investigated the biogeography of dispersing bacteria in the deep sea where upward hydrocarbon seepage was confirmed by acoustic imagery and geochemistry. Thermophilic endospores in the permanently cold seabed correlated with underlying seep conduits reveal geofluid-facilitated cell migration pathways originating in deep petroleum-bearing sediments. Endospore genomes highlight adaptations to life in anoxic petroleum systems and bear close resemblance to oil reservoir microbiomes globally. Upon transport out of the subsurface, viable thermophilic endospores reenter the geosphere by sediment burial, enabling germination and environmental selection at depth where new petroleum systems establish. This microbial dispersal loop circulates living biomass in and out of the deep biosphere.

6.
Water Res ; 220: 118611, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35661506

RESUMEN

Wastewater-based epidemiology (WBE) is an emerging surveillance tool that has been used to monitor the ongoing COVID-19 pandemic by tracking SARS-CoV-2 RNA shed into wastewater. WBE was performed to monitor the occurrence and spread of SARS-CoV-2 from three wastewater treatment plants (WWTP) and six neighborhoods in the city of Calgary, Canada (population 1.44 million). A total of 222 WWTP and 192 neighborhood samples were collected from June 2020 to May 2021, encompassing the end of the first-wave (June 2020), the second-wave (November end to December 2020) and the third-wave of the COVID-19 pandemic (mid-April to May 2021). Flow-weighted 24-hour composite samples were processed to extract RNA that was then analyzed for two SARS-CoV-2-specific regions of the nucleocapsid gene, N1 and N2, using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Using this approach SARS-CoV-2 RNA was detected in 98.06% (406/414) of wastewater samples. SARS-CoV-2 RNA abundance was compared to clinically diagnosed COVID-19 cases organized by the three-digit postal code of affected individuals' primary residences, enabling correlation analysis at neighborhood, WWTP and city-wide scales. Strong correlations were observed between N1 & N2 gene signals in wastewater and new daily cases for WWTPs and neighborhoods. Similarly, when flow rates at Calgary's three WWTPs were used to normalize observed concentrations of SARS-CoV-2 RNA and combine them into a city-wide signal, this was strongly correlated with regionally diagnosed COVID-19 cases and clinical test percent positivity rate. Linked census data demonstrated disproportionate SARS-CoV-2 in wastewater from areas of the city with lower socioeconomic status and more racialized communities. WBE across a range of urban scales was demonstrated to be an effective mechanism of COVID-19 surveillance.


Asunto(s)
COVID-19 , Humanos , Pandemias , ARN Viral , SARS-CoV-2 , Población Urbana , Aguas Residuales
7.
Water Res ; 201: 117369, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229222

RESUMEN

SARS-CoV-2 has been detected in wastewater and its abundance correlated with community COVID-19 cases, hospitalizations and deaths. We sought to use wastewater-based detection of SARS-CoV-2 to assess the epidemiology of SARS-CoV-2 in hospitals. Between August and December 2020, twice-weekly wastewater samples from three tertiary-care hospitals (totaling > 2100 dedicated inpatient beds) were collected. Hospital-1 and Hospital-2 could be captured with a single sampling point whereas Hospital-3 required three separate monitoring sites. Wastewater samples were concentrated and cleaned using the 4S-silica column method and assessed for SARS-CoV-2 gene-targets (N1, N2 and E) and controls using RT-qPCR. Wastewater SARS-CoV-2 as measured by quantification cycle (Cq), genome copies and genomes normalized to the fecal biomarker PMMoV were compared to the total daily number of patients hospitalized with active COVID-19, confirmed cases of hospital-acquired infection, and the occurrence of unit-specific outbreaks. Of 165 wastewater samples collected, 159 (96%) were assayable. The N1-gene from SARS-CoV-2 was detected in 64.1% of samples, N2 in 49.7% and E in 10%. N1 and N2 in wastewater increased over time both in terms of the amount of detectable virus and the proportion of samples that were positive, consistent with increasing hospitalizations at those sites with single monitoring points (Pearson's r = 0.679, P < 0.0001, Pearson's r = 0.799, P < 0.0001, respectively). Despite increasing hospitalizations through the study period, nosocomial-acquired cases of COVID-19 (Pearson's r = 0.389, P < 0.001) and unit-specific outbreaks were discernable with significant increases in detectable SARS-CoV-2 N1-RNA (median 112 copies/ml) versus outbreak-free periods (0 copies/ml; P < 0.0001). Wastewater-based monitoring of SARS-CoV-2 represents a promising tool for SARS-CoV-2 passive surveillance and case identification, containment, and mitigation in acute- care medical facilities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Brotes de Enfermedades , Humanos , Centros de Atención Terciaria , Carga Viral , Aguas Residuales
9.
Nat Microbiol ; 6(7): 885-898, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34127845

RESUMEN

Extracellular DNA is a major macromolecule in global element cycles, and is a particularly crucial phosphorus, nitrogen and carbon source for microorganisms in the seafloor. Nevertheless, the identities, ecophysiology and genetic features of DNA-foraging microorganisms in marine sediments are largely unknown. Here, we combined microcosm experiments, DNA stable isotope probing (SIP), single-cell SIP using nano-scale secondary isotope mass spectrometry (NanoSIMS) and genome-centric metagenomics to study microbial catabolism of DNA and its subcomponents in marine sediments. 13C-DNA added to sediment microcosms was largely degraded within 10 d and mineralized to 13CO2. SIP probing of DNA revealed diverse 'Candidatus Izemoplasma', Lutibacter, Shewanella and Fusibacteraceae incorporated DNA-derived 13C-carbon. NanoSIMS confirmed incorporation of 13C into individual bacterial cells of Fusibacteraceae sorted from microcosms. Genomes of the 13C-labelled taxa all encoded enzymatic repertoires for catabolism of DNA or subcomponents of DNA. Comparative genomics indicated that diverse 'Candidatus Izemoplasmatales' (former Tenericutes) are exceptional because they encode multiple (up to five) predicted extracellular nucleases and are probably specialized DNA-degraders. Analyses of additional sediment metagenomes revealed extracellular nuclease genes are prevalent among Bacteroidota at diverse sites. Together, our results reveal the identities and functional properties of microorganisms that may contribute to the key ecosystem function of degrading and recycling DNA in the seabed.


Asunto(s)
Bacterias/metabolismo , ADN/metabolismo , Sedimentos Geológicos/microbiología , Agua de Mar/microbiología , Anaerobiosis , Bacterias/clasificación , Bacterias/genética , Proteínas Bacterianas/genética , Biodegradación Ambiental , Vías Biosintéticas , Isótopos de Carbono/metabolismo , Frío , Genoma Bacteriano/genética , Metagenómica , Nucleósidos/metabolismo , Filogenia
10.
Front Microbiol ; 12: 764058, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069469

RESUMEN

Many pathways for hydrocarbon degradation have been discovered, yet there are no dedicated tools to identify and predict the hydrocarbon degradation potential of microbial genomes and metagenomes. Here we present the Calgary approach to ANnoTating HYDrocarbon degradation genes (CANT-HYD), a database of 37 HMMs of marker genes involved in anaerobic and aerobic degradation pathways of aliphatic and aromatic hydrocarbons. Using this database, we identify understudied or overlooked hydrocarbon degradation potential in many phyla. We also demonstrate its application in analyzing high-throughput sequence data by predicting hydrocarbon utilization in large metagenomic datasets from diverse environments. CANT-HYD is available at https://github.com/dgittins/CANT-HYD-HydrocarbonBiodegradation.

11.
Environ Microbiome ; 15(1): 3, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-33902727

RESUMEN

BACKGROUND: Lagoons are common along coastlines worldwide and are important for biogeochemical element cycling, coastal biodiversity, coastal erosion protection and blue carbon sequestration. These ecosystems are frequently disturbed by weather, tides, and human activities. Here, we investigated a shallow lagoon in New England. The brackish ecosystem releases hydrogen sulfide particularly upon physical disturbance, causing blooms of anoxygenic sulfur-oxidizing phototrophs. To study the habitat, microbial community structure, assembly and function we carried out in situ experiments investigating the bloom dynamics over time. RESULTS: Phototrophic microbial mats and permanently or seasonally stratified water columns commonly contain multiple phototrophic lineages that coexist based on their light, oxygen and nutrient preferences. We describe similar coexistence patterns and ecological niches in estuarine planktonic blooms of phototrophs. The water column showed steep gradients of oxygen, pH, sulfate, sulfide, and salinity. The upper part of the bloom was dominated by aerobic phototrophic Cyanobacteria, the middle and lower parts by anoxygenic purple sulfur bacteria (Chromatiales) and green sulfur bacteria (Chlorobiales), respectively. We show stable coexistence of phototrophic lineages from five bacterial phyla and present metagenome-assembled genomes (MAGs) of two uncultured Chlorobaculum and Prosthecochloris species. In addition to genes involved in sulfur oxidation and photopigment biosynthesis the MAGs contained complete operons encoding for terminal oxidases. The metagenomes also contained numerous contigs affiliating with Microviridae viruses, potentially affecting Chlorobi. Our data suggest a short sulfur cycle within the bloom in which elemental sulfur produced by sulfide-oxidizing phototrophs is most likely reduced back to sulfide by Desulfuromonas sp. CONCLUSIONS: The release of sulfide creates a habitat selecting for anoxygenic sulfur-oxidizing phototrophs, which in turn create a niche for sulfur reducers. Strong syntrophism between these guilds apparently drives a short sulfur cycle that may explain the rapid development of the bloom. The fast growth and high biomass yield of Chlorobi-affiliated organisms implies that the studied lineages of green sulfur bacteria can thrive in hypoxic habitats. This oxygen tolerance is corroborated by oxidases found in MAGs of uncultured Chlorobi. The findings improve our understanding of the ecology and ecophysiology of anoxygenic phototrophs and their impact on the coupled biogeochemical cycles of sulfur and carbon.

12.
Front Microbiol ; 10: 1093, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31156599

RESUMEN

Improved sequencing and analytical techniques allow for better resolution of microbial communities; however, the agriculture field lacks an updated analysis surveying the fecal microbial populations of dairy cattle in California. This study is a large-scale survey to determine the composition of the bacterial community present in the feces of lactating dairy cattle on commercial dairy operations. For the study, 10 dairy farms across northern and central California representing a variety of feeding and management systems were enrolled. The farms represented three typical housing types including five freestall, two drylot and three pasture-based management systems. Fresh feces were collected from 15 randomly selected cows on each farm and analyzed using 16S rRNA gene amplicon sequencing. This study found that housing type, individual farm, and dietary components significantly affected the alpha diversity of the fecal microbiota. While only one Operational Taxonomic Unit (OTU) was common among all the sampled individuals, 15 bacterial families and 27 genera were shared among 95% of samples. The ratio of the families Coriobacteriaceae to Bifidobacteriaceae was significantly different between housing types and farms with pasture fed animals having a higher relative abundance of Coriobacteriaceae. A majority of samples were positive for at least one OTU assigned to Enterobacteriaceae and 31% of samples contained OTUs assigned to Campylobacter. However, the relative abundance of both taxa was <0.1%. The microbial composition displays individual farm specific signatures, but housing type plays a role. These data provide insights into the composition of the core fecal microbiota of commercial dairy cows in California and will further generate hypotheses for strategies to manipulate the microbiome of cattle.

13.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30086128

RESUMEN

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Asunto(s)
Microbiota/genética , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiología , Filogenia , Desarrollo de la Planta , Mucílago de Planta/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Suelo , Microbiología del Suelo
14.
Genome Announc ; 5(46)2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146852

RESUMEN

Agrobacterium tumefaciens biovar 1 strain 186 was isolated from a walnut tree expressing crown gall symptoms. The draft genome sequence of this strain harbored genes for crown gall formation and will be useful for understanding its virulence on Paradox, the predominant hybrid rootstock used for the cultivation of English walnut in California.

15.
Environ Microbiol ; 19(12): 4866-4881, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28836729

RESUMEN

For the anaerobic remineralization of organic matter in marine sediments, sulfate reduction coupled to fermentation plays a key role. Here, we enriched sulfate-reducing/fermentative communities from intertidal sediments under defined conditions in continuous culture. We transiently exposed the cultures to oxygen or nitrate twice daily and investigated the community response. Chemical measurements, provisional genomes and transcriptomic profiles revealed trophic networks of microbial populations. Sulfate reducers coexisted with facultative nitrate reducers or aerobes enabling the community to adjust to nitrate or oxygen pulses. Exposure to oxygen and nitrate impacted the community structure, but did not suppress fermentation or sulfate reduction as community functions, highlighting their stability under dynamic conditions. The most abundant sulfate reducer in all cultures, related to Desulfotignum balticum, appeared to have coupled both acetate- and hydrogen oxidation to sulfate reduction. We describe a novel representative of the widespread uncultured candidate phylum Fermentibacteria (formerly candidate division Hyd24-12). For this strictly anaerobic, obligate fermentative bacterium, we propose the name 'U Sabulitectum silens' and identify it as a partner of sulfate reducers in marine sediments. Overall, we provide insights into the function of fermentative, as well as sulfate-reducing microbial communities and their adaptation to a dynamic environment.


Asunto(s)
Deltaproteobacteria/metabolismo , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Nitratos/metabolismo , Oxígeno/metabolismo , Sulfatos/química , Acetatos/química , Fermentación , Oxidación-Reducción
16.
Proc Natl Acad Sci U S A ; 112(8): E911-20, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25605935

RESUMEN

Plants depend upon beneficial interactions between roots and microbes for nutrient availability, growth promotion, and disease suppression. High-throughput sequencing approaches have provided recent insights into root microbiomes, but our current understanding is still limited relative to animal microbiomes. Here we present a detailed characterization of the root-associated microbiomes of the crop plant rice by deep sequencing, using plants grown under controlled conditions as well as field cultivation at multiple sites. The spatial resolution of the study distinguished three root-associated compartments, the endosphere (root interior), rhizoplane (root surface), and rhizosphere (soil close to the root surface), each of which was found to harbor a distinct microbiome. Under controlled greenhouse conditions, microbiome composition varied with soil source and genotype. In field conditions, geographical location and cultivation practice, namely organic vs. conventional, were factors contributing to microbiome variation. Rice cultivation is a major source of global methane emissions, and methanogenic archaea could be detected in all spatial compartments of field-grown rice. The depth and scale of this study were used to build coabundance networks that revealed potential microbial consortia, some of which were involved in methane cycling. Dynamic changes observed during microbiome acquisition, as well as steady-state compositions of spatial compartments, support a multistep model for root microbiome assembly from soil wherein the rhizoplane plays a selective gating role. Similarities in the distribution of phyla in the root microbiomes of rice and other plants suggest that conclusions derived from this study might be generally applicable to land plants.


Asunto(s)
Variación Genética , Microbiota/genética , Oryza/genética , Oryza/microbiología , Raíces de Plantas/microbiología , Bacterias/crecimiento & desarrollo , Recuento de Colonia Microbiana , Genotipo , Geografía , Metano/análisis , Oryza/crecimiento & desarrollo , Rizosfera , Suelo , Microbiología del Suelo , Factores de Tiempo
17.
Genome Announc ; 3(1)2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635016

RESUMEN

Here, we present the complete 2,003,803-bp genome of a sulfate-reducing thermophilic bacterium, Thermodesulfovibrio yellowstonii strain DSM 11347(T).

18.
Genome Announc ; 3(1)2015 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-25635017

RESUMEN

Here, we present the complete genome sequence of Thermodesulfobacterium commune DSM 2178(T) of the phylum Thermodesulfobacteria.

19.
Genome Announc ; 3(6)2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26722012

RESUMEN

Here, we present the complete genome sequence of Streptomyces sp. strain CCM_MD2014 (phylum Actinobacteria), isolated from surface soil in Woods Hole, MA. Its single linear chromosome of 8,274,043 bp in length has a 72.13% G+C content and contains 6,948 coding sequences.

20.
Genome Announc ; 3(6)2015 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-26722011

RESUMEN

Here, we present the 3,443,800-bp complete genome sequence of Curtobacterium sp. strain MR_MD2014 (phylum Actinobacteria). This strain was isolated from soil in Woods Hole, MA, as part of the 2014 Microbial Diversity Summer Program at the Marine Biological Laboratory in Woods Hole, MA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...