Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(22): 14745-14760, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28540952

RESUMEN

The effect of ionic strength on the electrodeposition of silver has been investigated in acetonitrile (MeCN) containing TBAPF6 or in the ionic liquid [EMIm][OTf]. The use of an ionic liquid allows a greater ionic strength to be investigated as the solubility limits of supporting electrolytes in organic solvents can be overcome using neat ionic liquid. The SEM and XRD data show that polycrystalline silver is deposited in a fcc structure and that dendrite formation is retarded at high ionic strength. Electrochemical measurements undertaken in electrolytes of low ionic strength indicate that the deposition and growth of a few nuclei is preferred and leads to dendrite formation. However, at higher ionic strength, the deposition and growth of significantly more nuclei is observed and therefore dendrite growth rates and tip currents are lower leading to the deposition of spherical particulates. Crucially, the data shows that if the ionic strength of the electrolyte is controlled there are no differences between ionic liquids and molecular solvents for the electrodeposition of silver.

2.
Chempluschem ; 81(4): 378-383, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31968752

RESUMEN

The fabrication of a superhydrophobic nylon textile based on the organic charge-transfer complex CuTCNAQ (TCNAQ=11,11,12,12-tetracyanoanthraquinodimethane) is reported. The nylon fabric, which is metallized with copper, undergoes a spontaneous chemical reaction with TCNAQ dissolved in acetonitrile to form nanorods of CuTCNAQ that are intertwined over the entire surface of the fabric. This creates the necessary micro- and nanoscale roughness that often allows the Cassie-Baxter state to be obtained with high robustness, thereby achieving a superhydrophobic/superoleophilic surface without the need for a fluorinated surface. The material is characterized with SEM, FTIR spectroscopy, and X-ray photoelectron spectroscopy, and investigated for its ability to separate oil and water in two modes, namely through filtration and as an absorbent material. It is found that the fabric can separate dichloromethane, olive oil, and crude oil from water, and reduce the water content of the oil during the separation process. The fabric is reusable, highly durable, and tolerant to conditions such as seawater, hydrochloric acid, and extensive time periods on the shelf. Given that CuTCNAQ is a copper-based semiconductor, there may also be the possibility of other uses in areas such as photocatalysis and antibacterial applications.

3.
Front Chem ; 2: 79, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309898

RESUMEN

Electrochemical cells and systems play a key role in a wide range of industry sectors. These devices are critical enabling technologies for renewable energy; energy management, conservation, and storage; pollution control/monitoring; and greenhouse gas reduction. A large number of electrochemical energy technologies have been developed in the past. These systems continue to be optimized in terms of cost, life time, and performance, leading to their continued expansion into existing and emerging market sectors. The more established technologies such as deep-cycle batteries and sensors are being joined by emerging technologies such as fuel cells, large format lithium-ion batteries, electrochemical reactors; ion transport membranes and supercapacitors. This growing demand (multi billion dollars) for electrochemical energy systems along with the increasing maturity of a number of technologies is having a significant effect on the global research and development effort which is increasing in both in size and depth. A number of new technologies, which will have substantial impact on the environment and the way we produce and utilize energy, are under development. This paper presents an overview of several emerging electrochemical energy technologies along with a discussion some of the key technical challenges.

4.
Chemphyschem ; 10(2): 455-61, 2009 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-19090511

RESUMEN

Electrode-dependent potential windows (see picture, GC=glassy carbon) are determined for five dialkylammonium carbamate (dialcarb) room-temperature ionic liquids in a systematic study of their physical and electrochemical properties. The viscosity and conductivity of the dialcarb ionic liquids, which are "distillable" at low temperature, are comparable to those of some conventional room-temperature ionic liquids. The physical and electrochemical properties of five "distillable" room-temperature ionic liquids from the dialcarb family (dialkylammonium carbamates formed from CO(2) and dialkyl amines) are systematically investigated. In particular dimethyl (DIMCARB), diethyl (DIECARB), dipropyl (DIPCARB), methylethyl (MEETCARB), and methylpropyl (MEPRCARB) carbamate ionic liquids are studied. The temperature dependence of the viscosity and conductivity of MEETCARB exhibit an Arrhenius-type relationship. Except for DIPCARB, which has too high a resistance, a reference potential scale is available by using the IUPAC recommended redox system, that is the cobalticenium/cobaltocene (Cc(+)/Cc) process, which exhibits an ideal reversible voltammetric response. Oxidation of decamethylferrocene, but not ferrocene, also is ideal in DIMCARB, DIECARB, MEETCARB, and MEPRCARB. The magnitudes of the potential windows of the electrochemically viable dialcarbs are investigated and follow the order of glassy carbon>Au>Pt>Hg. Diffusion coefficients of Cc(+), DmFc, and double-layer capacitance values are compared in each dialcarb. Despite the considerable viscosity of the dialcarbs, steady-state voltammetric behavior is achieved at a rotating disk electrode for rotation rates of 1000 rpm or higher.

5.
Inorg Chem ; 46(21): 8638-51, 2007 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-17880205

RESUMEN

[Ru(bpy)(2)(Mebpy-COOH)](PF(6))(2).3H(2)O (1), [Ru(phen)(2)(Mebpy-COOH)](ClO(4))(2).5H(2)O (2), [Ru(dppz)(2)(Mebpy-COOH)]Cl(2).9H(2)O (3), and [Ru(bpy)(dppz)(Mebpy-COOH)](PF(6))(2).5H(2)O (4) (bpy = 2,2'-bipyridine, Mebpy-COOH = 4'-methyl-2,2'-bipyridine-4-carboxylic acid, phen = 1,10-phenanthroline, dppz = dipyrido[3,2,-a;2',3-c]phenazine) have been synthesized and characterized spectroscopically and by microanalysis. The [Ru(Mebpy-COOH)(CO)(2)Cl(2)].H(2)O intermediate was prepared by reaction of the monocarboxylic acid ligand, Mebpy-COOH, with [Ru(CO)(2)Cl(2)](n), and the product was then reacted with either bpy, phen, or dppz in the presence of an excess of trimethylamine-N-oxide (Me(3)NO), as the decarbonylation agent, to generate 1, 2, and 3, respectively. For compound 4, [Ru(bpy)(CO)Cl(2)](2) was reacted with Mebpy-COOH to yield [Ru(bpy)(Mebpy-COOH)(CO)Cl](PF(6)).H(2)O as a mixture of two main geometric isomers. Chemical decarbonylation in the presence of dppz gave 4 also as a mixture of two isomers. Electrochemical and spectrophotometric studies indicated that complexes 1 and 2 were present as a mixture of protonated and deprotonated forms in acetonitrile solution because of water of solvation in the isolated solid products. The X-ray crystal structure determination on crystals of [Ru(bpy)2(MebpyCOO)][Ru(bpy)(2)(MebpyCOOH)](3)(PF(6))(7), 1a, and [Ru(phen)(2)(MebpyCOO)](ClO(4)).6H(2)O, 2a, obtained from solutions of 1 and 2, respectively, revealed that 1a consisted of a mixture of protonated and deprotonated forms of the complex in a 1:3 ratio and that 2a consisted of the deprotonated derivative of 2. A distorted octahedral geometry for the Ru(II) centers was found for both complexes. Upon excitation at 450 nm, MeCN solutions of the protonated complexes 1-4 were found to exhibit emission bands in the 635-655 nm range, whereas the corresponding emission maxima of their deprotonated forms were observed at lower wavelengths. Protonation/deprotonation effects were also observed in the luminescence and electrochemical behavior of complexes 1-4. Comprehensive electrochemical studies in acetonitrile show that the ruthenium centers on 1, 2, 3, and 4 are oxidized from Ru(II) to Ru(III) with reversible potentials at 917, 929, 1052, and 1005 mV vs Fc(0/+) (Fc = ferrocene), respectively. Complexes 1 and 2 also exhibit an irreversible oxidation process in acetonitrile, and all compounds undergo ligand-based reduction processes.

6.
J Am Chem Soc ; 129(8): 2369-82, 2007 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-17263534

RESUMEN

Electrocrystallization of single nanowires and/or crystalline thin films of the semiconducting and magnetic Co[TCNQ]2(H2O)2 (TCNQ=tetracyanoquinodimethane) charge-transfer complex onto glassy carbon, indium tin oxide, or metallic electrodes occurs when TCNQ is reduced in acetonitrile (0.1 M [NBu4][ClO4]) in the presence of hydrated cobalt(II) salts. The morphology of the deposited solid is potential dependent. Other factors influencing the electrocrystallization process include deposition time, concentration, and identity of the Co2+(MeCN) counteranion. Mechanistic details have been elucidated by use of cyclic voltammetry, chronoamperometry, electrochemical quartz crystal microbalance, and galvanostatic methods together with spectroscopic and microscopic techniques. The results provide direct evidence that electrocrystallization takes place through two distinctly different, potential-dependent mechanisms, with progressive nucleation and 3-D growth being controlled by the generation of [TCNQ]*- at the electrode and the diffusion of Co2+(MeCN) from the bulk solution. Images obtained by scanning electron microscopy reveal that electrocrystallization of Co[TCNQ]2(H2O)2 at potentials in the range of 0.1-0 V vs Ag/AgCl, corresponding to the [TCNQ]0/*- diffusion-controlled regime, gives rise to arrays of well-separated, needle-shaped nanowires via the overall reaction 2[TCNQ]*-(MeCN)+Co2+(MeCN)+2H2O right harpoon over left harpoon {Co[TCNQ]2(H2O)2}(s). In this potential region, nucleation and growth occur at randomly separated defect sites on the electrode surface. In contrast, at more negative potentials, a compact film of densely packed, uniformly oriented, hexagonal-shaped nanorods is formed. This is achieved at a substantially increased number of nucleation sites created by direct reduction of a thin film of what is proposed to be cobalt-stabilized {(Co2+)([TCNQ2]*-)2} dimeric anion. Despite the potential-dependent morphology of the electrocrystallized Co[TCNQ]2(H2O)2 and the markedly different nucleation-growth mechanisms, IR, Raman, elemental, and thermogravimetric analyses, together with X-ray diffraction, all confirmed the formation of a highly pure and crystalline phase of Co[TCNQ]2(H2O)2 on the electrode surface. Thus, differences in the electrodeposited material are confined to morphology and not to phase or composition differences. This study highlights the importance of the electrocrystallization approach in constructing and precisely controlling the morphology and stoichiometry of Co[TCNQ]2-based materials.


Asunto(s)
Cobalto/química , Membranas Artificiales , Nanoestructuras/química , Nitrilos/química , Compuestos Organometálicos/química , Cristalización , Conductividad Eléctrica , Electroquímica , Tamaño de la Partícula , Difracción de Polvo , Semiconductores , Sensibilidad y Especificidad , Solubilidad , Espectrofotometría Infrarroja , Espectrometría Raman , Propiedades de Superficie , Termogravimetría , Factores de Tiempo
7.
Inorg Chem ; 45(4): 1677-82, 2006 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-16471980

RESUMEN

A Th(IV) compound, [Th(TFSI)4(HTFSI)].2H2O [where TFSI = N(SO2CF3)2], has been synthesized and characterized using elemental analysis, thermogravimetric analysis, and vibrational spectroscopy. The analysis suggests that the TFSI anion coordinates to the metal center via the sulfonyl oxygens as well as provides evidence for the coordination of HTFSI. The voltammetric behavior of this compound has been studied in the room-temperature ionic liquid [Me3NnBu][TFSI], and results show that Th(IV) is reduced to Th(0) in this ionic liquid in a single reduction step. Analysis of cyclic voltammograms shows that an insoluble product is being formed at the electrode surface, which is attributed to the formation of ThO2 by reaction with water. The E0 value for the reduction of Th(IV) to Th(0) has been determined to be -2.20 V (vs Fc+/Fc; -1.80 V vs SHE). A comparison of this E0 value with those obtained for Th(IV) reduction in a LiCl-KCl eutectic (400 degrees C), water, and nonaqueous solvents shows that the reduction in [Me3NnBu][TFSI] is easier to accomplish than that in these other solvents.

8.
Inorg Chem ; 44(14): 4934-40, 2005 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-15998020

RESUMEN

The reduction of selected lanthanide cations to the zerovalent state in the room-temperature ionic liquid [Me3N(n)Bu][TFSI] is reported (where TFSI = bistriflimide, [N(SO2CF3)2]-). The lanthanide cations were introduced to the melt as the TFSI hydrate complexes [Ln(TFSI)3(H2O)3] (where Ln = La(III), Sm(III) or Eu(III)). The lanthanum compound [La(TFSI)3(H2O)3] has been crystallographically characterized, revealing the first structurally characterized f-element TFSI complex. The lanthanide in all three complexes was shown to be reducible to the metallic state in [Me3N(n)Bu][TFSI]. For both the Eu and Sm complexes, reduction to the metallic state was achieved via divalent species, and there was an additional observation of the electrodeposition of Eu metal.

9.
Inorg Chem ; 44(1): 2-4, 2005 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-15627351

RESUMEN

In situ EXAFS spectroscopic studies of uranium compounds in high temperature alkali chloride melts indicate the presence of oligomeric species. An investigation into UCl(3) and UCl(4) dissolved in LiCl reveals long range ordering of uranium atoms in the molten state which is not maintained on quenching. Studies of uranium dioxide dissolved in LiCl-KCl eutectic with HCl exhibit long range ordering in both molten and quenched states, and the EXAFS data can be modeled using multiple coordination shells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA