Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38733461

RESUMEN

Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.

2.
Polymers (Basel) ; 15(7)2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37050415

RESUMEN

Microbial exopolysaccharides (EPSs), e.g., xanthan, dextran, gellan, curdlan, etc., have significant applications in several industries (pharma, food, textiles, petroleum, etc.) due to their biocompatibility, nontoxicity, and functional characteristics. However, biodegradability, poor cell adhesion, mineralization, and lower enzyme activity are some other factors that might hinder commercial applications in healthcare practices. Some EPSs lack biological activities that make them prone to degradation in ex vivo, as well as in vivo environments. The blending of EPSs with other natural and synthetic polymers can improve the structural, functional, and physiological characteristics, and make the composites suitable for a diverse range of applications. In comparison to EPS, composites have more mechanical strength, porosity, and stress-bearing capacity, along with a higher cell adhesion rate, and mineralization that is required for tissue engineering. Composites have a better possibility for biomedical and healthcare applications and are used for 2D and 3D scaffold fabrication, drug carrying and delivery, wound healing, tissue regeneration, and engineering. However, the commercialization of these products still needs in-depth research, considering commercial aspects such as stability within ex vivo and in vivo environments, the presence of biological fluids and enzymes, degradation profile, and interaction within living systems. The opportunities and potential applications are diverse, but more elaborative research is needed to address the challenges. In the current article, efforts have been made to summarize the recent advancements in applications of exopolysaccharide composites with natural and synthetic components, with special consideration of pharma and healthcare applications.

3.
Microorganisms ; 11(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37110508

RESUMEN

Multifarious plant growth-promoting Bacillus strains recovered from rhizospheric soils of the Indo Gangetic plains (IGPs) were identified as Bacillus licheniformis MNNITSR2 and Bacillus velezensis MNNITSR18 based on their biochemical characteristics and 16S rDNA gene analysis. Both strains exhibited the ability to produce IAA, siderophores, ammonia, lytic enzymes, HCN production, and phosphate solubilization capability and strongly inhibited the growth of phytopathogens such as Rhizoctonia solani and Fusariun oxysporum in vitro. In addition, these strains are also able to grow at a high temperature of 50 °C and tolerate up to 10-15% NaCl and 25% PEG 6000. The results of the pot experiment showed that individual seed inoculation and the coinoculation of multifarious plant growth promoting (PGP) Bacillus strains (SR2 and SR18) in rice fields significantly enhanced plant height, root length volume, tiller numbers, dry weight, and yield compared to the untreated control. This indicates that these strains are potential candidates for use as PGP inoculants/biofertilizers to increase rice productivity under field conditions for IGPs in Uttar Pradesh, India.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36141539

RESUMEN

The felicitous tourist destination "Hills Queen" and the capital city of Himachal Pradesh, an enticing state in the Himalayan region, are met with water crisis every year and jaundice outbreaks occasionally. In 2016, there was a severe jaundice outbreak in Shimla city. In a contemporaneous investigation, we attempted to trace out the possible reason for these crises in Shimla. Samples were collected month wise from different water-supply sources and their physicochemical and microbial loads were analyzed. The microbiological examination found a totally excessive microbial load (1.064 × 109 cfu/mL on common) throughout the year with a maximum (>1.98 × 1010 cfu/mL) in the wet season and minimum (>3.00 × 107 cfu/mL) in the winter. Biochemical and morphological evaluation confirmed that most of the water resources reported a high number of coliforms and Gram-negative microorganisms due to sewage-water infiltration. These microorganisms in the water are responsible for the liver infection that ultimately causes jaundice. For safe and potable water, infiltration of municipal wastewater must be prevented at any cost. Scientific disposal of wastewater and purification of uncooked water have to be conducted earlier than consumption or use for different domestic functions, to avoid water crises and fetal ailment outbreaks in the near future.


Asunto(s)
Agua Potable , Ictericia , Purificación del Agua , Brotes de Enfermedades , Humanos , Ictericia/epidemiología , Ictericia/etiología , Aguas del Alcantarillado/química , Eliminación de Residuos Líquidos , Aguas Residuales , Microbiología del Agua
5.
Bioprocess Biosyst Eng ; 45(6): 1019-1031, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35355104

RESUMEN

Xylitol is a well-known sugar alcohol with exponentially rising market demand due to its diverse industrial applications. Organic agro-industrial residues (OAIR) are economic alternative for the cost-effective production of commodity products along with addressing environmental pollution. The present study aimed to design a process for xylitol production from OAIR via microbial fermentation with Pseudomonas gessardii VXlt-16. Parametric analysis with Taguchi orthogonal array approach resulted in a conversion factor of 0.64 g xylitol/g xylose available in untreated sugarcane bagasse hydrolysate (SBH). At bench scale, the product yield increased to 71.98/100 g (0.66 g/L h). 48.49 g of xylitol crystals of high purity (94.56%) were recovered after detoxification with 2% activated carbon. Cost analysis identified downstream operations as one of the cost-intensive parts that can be countered by adsorbent recycling. Spent carbon, regenerated with acetic acid washing can be reused for six cycles effectively and reduced downstream cost by about ≈32%. The strategy would become useful in the cost-effective production of several biomass-dependent products like proteins, enzymes, organic acids, as well.


Asunto(s)
Saccharum , Xilitol , Celulosa/química , Costos y Análisis de Costo , Fermentación , Hidrólisis , Pseudomonas , Saccharum/metabolismo , Xilosa/metabolismo
6.
Chemosphere ; 293: 133564, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35007612

RESUMEN

Quantum dots (QDs) are getting special attention due to their commendable optical properties and applications. Conventional metal-based QDs have toxicity and non-biodegradability issues, thus it becomes necessary to search for renewable precursor molecules for QDs synthesis. In recent years, biomass-based carbon rich QDs (CQDs) have been introduced which are mainly synthesised via carbonization (pyrolysis and hydrothermal treatment). These CQDs offered higher photostability, biocompatibility, low-toxicity, and easy tunability for physicochemical properties. Exceptional optical properties become a point of attraction for its multifaceted applications in various sectors like fabrication of electrodes and solar cells, conversion of solar energy to electricity, detection of pollutants, designing biosensors, etc. In recent years, a lot of work has been done in this field. This article will summarize these advancements along in a special context to biomass-based QDs and their applications in energy and the environment.


Asunto(s)
Puntos Cuánticos , Energía Solar , Biodegradación Ambiental , Biomasa , Carbono/química , Puntos Cuánticos/química
7.
Biotechnol Appl Biochem ; 69(4): 1679-1689, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34363245

RESUMEN

Biomolecular carbon dots (CDs) have immense potential for various industries due to exceptional bioactivity, biocompatibility, low toxicity, and biodegradability. In the present work xylitol (Xlt), a natural sweetener produced by microbial fermentation of sugarcane bagasse (71.98% conversion) has been used for CDs preparation by microwave-assisted carbonization in the presence of ethylene diamine (EDA). The resultant xylitol carbon dots (XCDs) were irregular shaped, rough with an average size of 8.88 nm and exhibiting fluorescence between 400 and 450 nm. The presence of EDA preserves the native chemical structure of Xlt even after exposure to microwaves. Purified XCDs were conjugated (AM-XCD) with ketoconazole and tetracycline for fungi and bacteria, respectively. In comparison to Xlt, XCDs have higher inhibitory potential and reduced dosage size of antimicrobials against Cryptococcus neoformans, Candida albicans, Streptococcus pyogenes, and Escherichia coli by 75%, 75%, 87.50%, and 50%, respectively. For Listeria monocytogenes and Salmonella typhi also inhibitory potential was increased by 14.68% and 21.38%. Increased efficacy advocated the improved drug delivery in the presence of XCDs. However, no inhibitory effect was recorded against DU145 (human prostate cancer) and HCT-15 (human colon adenocarcinoma) cell lines. The findings of the current work suggested the possible use of Xlt as an important antimicrobial agent besides an efficient drug carrier in healthcare.


Asunto(s)
Adenocarcinoma , Antiinfecciosos , Neoplasias del Colon , Saccharum , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Carbono/química , Celulosa/metabolismo , Portadores de Fármacos/química , Humanos , Saccharum/metabolismo , Xilitol/metabolismo , Xilitol/farmacología
8.
3 Biotech ; 11(6): 280, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34094799

RESUMEN

Enzymes are the complex protein moieties, catalyze the rate of chemical reactions by transforming various substrates to specific products and play an integral part in multiple biochemical cycles. Advancement in enzyme research and its integration with industries have reformed the biotech industries. It provides a superior monetary and ecological exchange to traditional material measures in an efficient and environmentally sustainable manner. The cost-effective production of pure and highly active enzymes is still a challenge for the biocatalyst industries. The use of high purity substrates further raises the cost of a typical biocatalyst. The use of low-cost plant-based biomasses as an enticing and sustainable substrate for enzyme production is the most cost-effective approach to these problems. Given the relevance of biomass as a substrate for enzyme development, this review article focuses on the key source, composition and major enzyme generated using various biomass residues. Furthermore, the difficulties associated with the use of biomass as a substrate and technical developments in this area, are also addressed. The use of waste biomass as a substrate lowers the ultimate cost for the production of biocatalysts while simultaneously reduces the waste burden from the environment.

9.
Bioresour Technol ; 317: 124020, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32827973

RESUMEN

In view of the potential applications of immobilized enzymes, partially purified Lignin Peroxidase (LiP) from Pseudomonas fluorescens LiP-RL5 was immobilized on Graphene Oxide functionalized MnFe2O4 nanoparticles (10 nm, synthesized by sol-gel auto-combustion) to fabricate a new hyperactive and thermostable nanobiocatalyst and thereafter characterized by using standard techniques. Immobilized LiP was quite stable at 50 °C with the half-life of 14 h and showed higher tolerance towards various metal ions and solvents than free LiP. Immobilized LiP retained 50% of enzyme activity even after nine consecutive runs. When tested against various textile dyes, the immobilized LiP was found quite effective with higher dye decolourization efficiency (up to 88%) within 1 h of incubation at 30 °C. The results of this research effort confirmed that the immobilization of LiP and fabrication of nanobiocatalyst increase the efficacy, stability, and reusability of the enzyme which could be efficiently utilized under harsh industrial conditions.


Asunto(s)
Grafito , Nanopartículas de Magnetita , Estabilidad de Enzimas , Enzimas Inmovilizadas , Concentración de Iones de Hidrógeno , Peroxidasas , Temperatura
10.
J Tradit Complement Med ; 10(2): 158-165, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32257879

RESUMEN

Plant-based synthesis of nanoparticles has generated worldwide interest because of cost-effectiveness, eco-friendly nature and plethora of applications. In the present investigation, antimicrobial potential of silver nanoparticles (AgNPs) of methanolic extract of Aegle marmelos fruit has been investigated. Agar well diffusion method was used for determining antimicrobial activity of solvent extracts (viz., petroleum ether, chloroform, acetone, methanol and aqueous), and AgNPs. Among these, methanolic extract of A. marmelos showed highest inhibitory activity against B. cereus (16.17 ±â€¯0.50 mm) followed by P. aeruginosa (13.33 ±â€¯0.62 mm) and E. coli. Phytochemical analysis of methanolic extract of A. marmelos revealed the presence of tannins, saponins, steroids, alkaloids, flavonoids, and glycosides. AgNPs synthesized using A. marmelos methanolic extract, characterized by UV-Visible spectroscopy, atomic force microscopy, dynamic light scattering, and X-ray diffraction showed a peak at 436 nm and size ranged between 159 and 181 nm. Evaluation of the antimicrobial potential of green synthesized AgNPs recorded the highest inhibitory activity against B. cereus (19.25 ±â€¯0.19 mm) followed by P. aeruginosa (16.50 ±â€¯0.30 mm) and S. dysentriae. The minimum inhibitory concentration (MIC) of synthesized AgNPs was found to be in the range of 0.009875-0.0395 mg/100 µl which was quite lower than the MIC of crude extract i.e. 0.0781-0.3125 mg/100 µl. The results obtained indicated that the different crude extracts of A. marmelos plant as well as AgNPs have a strong and effective antimicrobial potential that provide a marvelous source for the development of new drug molecules of herbal origin which may be used for the welfare of humanity.

11.
Gene ; 523(1): 106-11, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23566847

RESUMEN

CC chemokine receptor-3 (CCR3) is involved in angiogenic processes. Recently, CCR3 was accounted to participate in choroidal neovascularization (CNV) and CCR3 targeting was reported to be superior to standard antivascular endothelial growth factor-A (VEGF-A) administration when tested in an artificially induced CNV in animals. As human CCR3 studies are lacking in age-related macular degeneration (AMD) patients we sought to determine if CCR3 has any association with inflammatory processes that occur in CNV. A total of 176 subjects were included on the basis of inclusion criteria. Real time PCR was used to analyze the single nucleotide polymorphism in CCR3 of AMD (115) and normal controls (n=61). Genotype frequency was adjusted for possible confounders like cigarette smoking, alcohol, meat consumption and other risk factors. Chi-square test was used for analysis of polymorphism. The genotype distribution of CCR3 (rs3091250) polymorphism was significantly different in AMD patients in the Indian population. GT (heterozygous) and TT (homozygous) at the rs3091250 SNP increased risk of AMD as compared to the GG genotypes (OR=4.8, CI 95%=2.2-10.8 and OR=4.1, CI 95%=1.6-10.1 respectively). Subgroup analysis of AMD patients in wet and dry revealed no significant differences. There was no significant difference for rs3091312 in AMD and control group. A significant association between AMD and CCR3 (rs3091250) polymorphism localized on chromosome 3p21.3 was detected. The results suggest the possible contribution of rs3091250, a new predisposing allele in AMD.


Asunto(s)
Degeneración Macular/genética , Polimorfismo de Nucleótido Simple , Receptores CCR3/genética , Anciano , Alelos , Estudios de Casos y Controles , Distribución de Chi-Cuadrado , Cromosomas Humanos Par 3/genética , Femenino , Frecuencia de los Genes , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Técnicas de Genotipaje , Humanos , India , Modelos Logísticos , Degeneración Macular/diagnóstico , Masculino , Persona de Mediana Edad , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...