Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Folia Microbiol (Praha) ; 68(3): 415-430, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36547806

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is a diarrheagenic bacterium that predominantly infects infants in developing countries. EPEC forms attaching and effacing (A/E) lesions on the apical surface of the small intestine, leading to diarrhea. The locus of enterocyte effacement (LEE) is both necessary and sufficient for A/E lesion morphogenesis by EPEC. Gene expression from this virulence determinant is controlled by an elaborate regulatory web that extends beyond protein-based transcriptional regulators and includes small regulatory RNA (sRNA) that exert their effects posttranscriptionally. To date, only 4 Hfq-dependent sRNAs-MgrR, RyhB, McaS, and Spot42-have been identified that affect the LEE of EPEC by diverse mechanisms and elicit varying regulatory outcomes. In this study, we demonstrate that the paralogous Hfq-dependent sRNAs OmrA and OmrB globally silence the LEE to diminish the ability of EPEC to form A/E lesions. Interestingly, OmrA and OmrB do not appear to directly target a LEE-encoded gene; rather, they repress transcription from the LEE1 promoter indirectly, by means of an as-yet-unidentified transcriptional factor that binds within 200 base pairs upstream of the transcription start site to reduce the expression of the LEE master regulator Ler, which, in turn, leads to reduced morphogenesis of A/E lesions. Additionally, OmrA and OmrB also repress motility in EPEC by targeting the 5' UTR of the flagellar master regulator, flhD.


Asunto(s)
Escherichia coli Enteropatógena , Regiones Promotoras Genéticas , Factores de Transcripción
2.
Proc Natl Acad Sci U S A ; 119(10): e2117930119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35239434

RESUMEN

SignificanceWhile most small, regulatory RNAs are thought to be "noncoding," a few have been found to also encode a small protein. Here we describe a 164-nucleotide RNA that encodes a 28-amino acid, amphipathic protein, which interacts with aerobic glycerol-3-phosphate dehydrogenase and increases dehydrogenase activity but also base pairs with two mRNAs to reduce expression. The coding and base-pairing sequences overlap, and the two regulatory functions compete.


Asunto(s)
Carbono/metabolismo , Escherichia coli/metabolismo , ARN Bacteriano/fisiología , Medios de Cultivo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Galactosa/metabolismo , Glicerol/metabolismo , Glicerolfosfato Deshidrogenasa/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo
3.
Infect Immun ; 89(3)2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33361199

RESUMEN

Atypical enteropathogenic Escherichia coli (aEPEC) are associated with diarrhea worldwide, yet genome-wide investigations to probe their virulome are lacking. In this issue of Infection and Immunity, V. E. Watson, T. H. Hazen, D. A. Rasko, M. E. Jacob, et al. (IAI 89:e00619-20, 2020, https://doi.org/10.1128/IAI.00619-20) sequenced aEPEC isolates from diarrheic and asymptomatic kittens. Using phylogenomics, they demonstrated that these isolates were genetically indistinguishable from human isolates, suggesting that kittens may serve as a reservoir and, perhaps, a much-needed model to interrogate aEPEC virulence. The diarrheic isolates were hypermotile, suggesting that this phenotype may distinguish virulent strains from their innocuous counterparts.


Asunto(s)
Escherichia coli Enteropatógena , Infecciones por Escherichia coli , Animales , Secuencia de Bases , Gatos , Diarrea , Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/veterinaria , Femenino , Humanos , Virulencia
4.
Microb Pathog ; 135: 103643, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31336143

RESUMEN

The diarrheic bacterium Escherichia albertii is a recent addition to the attaching and effacing (A/E) morphotype of pathogens. A/E pathogens cause disease by tightly attaching to intestinal cells, destroying their actin-rich microvilli, and triggering re-localization and repolymerization of actin at the bacterial-host interface to form actin-filled membranous protrusions, termed A/E lesions, beneath the adherent bacterium. The locus of enterocyte effacement (LEE) is required for the biogenesis of these lesions. Whereas regulation of the LEE has been intensively investigated in EPEC and EHEC, it remains cryptic in E. albertii. In this study we characterized the very first transcriptional and posttranscriptional regulators of the LEE in this emerging pathogen. Our results suggest that Ler and GrlA globally activate transcription from the LEE, whereas GrlR negatively regulates the LEE. Additionally, we demonstrate that the RNA chaperone Hfq posttranscriptionally represses the LEE by specifically targeting the 5' UTR of grlR. In summary, our findings provide the very first glimpse of the regulatory landscape of the LEE in E. albertii - a bacterium that has been implicated in multiple diarrheal outbreaks worldwide.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enterocitos/metabolismo , Escherichia/genética , Escherichia/metabolismo , Regulación Bacteriana de la Expresión Génica , Células 3T3 , Actinas , Animales , Secuencia de Bases , Eliminación de Gen , Proteína de Factor 1 del Huésped/genética , Proteína de Factor 1 del Huésped/metabolismo , Ratones , Oligonucleótidos/genética , Oligonucleótidos/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transactivadores , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30373891

RESUMEN

The diarrheic attaching and effacing (A/E) pathogen Escherichia albertii was first isolated from infants in Bangladesh in 1991, although the bacterium was initially classified as Hafnia alvei Subsequent genetic and biochemical interrogation of these isolates raised concerns about their initial taxonomic placement. It was not until 2003 that these isolates were reassigned to the novel taxon Escherichia albertii because they were genetically more closely related to E. coli, although they had diverged sufficiently to warrant a novel species name. Unfortunately, new isolates continue to be mistyped as enteropathogenic E. coli (EPEC) or enterohemorrhagic E. coli (EHEC) owing to shared traits, most notably the ability to form A/E lesions. Consequently, E. albertii remains an underappreciated A/E pathogen, despite multiple reports demonstrating that many provisional EPEC and EHEC isolates incriminated in disease outbreaks are actually E. albertii Metagenomic studies on dozens of E. albertii isolates reveal a genetic architecture that boasts an arsenal of candidate virulence factors to rival that of its better-characterized cousins, EPEC and EHEC. Beyond these computational comparisons, studies addressing the regulation, structure, function, and mechanism of action of its repertoire of virulence factors are lacking. Thus, the paucity of knowledge about the epidemiology, virulence, and antibiotic resistance of E. albertii, coupled with its misclassification and its ability to develop multidrug resistance in a single step, highlights the challenges in combating this emerging pathogen. This review seeks to synthesize our current but incomplete understanding of the biology of E. albertii.


Asunto(s)
Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/microbiología , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Escherichia/crecimiento & desarrollo , Escherichia/patogenicidad , Factores de Virulencia/metabolismo , Farmacorresistencia Bacteriana , Escherichia/clasificación , Escherichia/genética , Humanos , Factores de Virulencia/genética
6.
Microorganisms ; 5(4)2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29194362

RESUMEN

The locus of enterocyte effacement is necessary for enteropathogenic Escherichia coli (EPEC) to form attaching and effacing (A/E) lesions. A/E lesions are characterized by intimate bacterial adherence to intestinal cells and destruction of microvilli, which leads to diarrhea. Therefore, studies interrogating the regulation of the locus of enterocyte effacement (LEE) are critical for understanding the molecular epidemiology of EPEC infections and developing interventional strategies. Hitherto, most studies have centered on protein-based regulators, whereas the role of small regulatory RNAs remains underappreciated. Previously, we identified the first sRNAs-MgrR, RyhB, and McaS-that regulate the LEE of EPEC. This study was undertaken to identify additional sRNAs that impact the LEE. Our results suggest that the catabolite-responsive sRNA, Spot42, indirectly controls the LEE by inhibiting synthesis of its inducer, indole. Spot42 base-pairs with the tnaCAB mRNA and presumably destabilizes the transcript, thereby preventing expression of the regulatory and structural proteins that are involved in the import and hydrolysis of tryptophan into indole. The absence of intracellular indole leads to reduced transcription of the LEE1-encoded master transcriptional activator Ler, thereby maintaining the LEE in its silenced state and delaying A/E lesion morphogenesis. Our results highlight the importance of riboregulators that synchronize metabolic and virulence pathways in bacterial infection.

7.
Genome Announc ; 5(45)2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29122859

RESUMEN

Twelve siphoviral phages isolated using Arthrobacter sp. strain ATCC 21022 were sequenced. The phages all have relatively small genomes, ranging from 15,319 to 15,556 bp. All 12 phages are closely related to previously described cluster AN Arthrobacter phages.

8.
Pathog Dis ; 75(1)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27956465

RESUMEN

Enteropathogenic Escherichia coli (EPEC) is a significant cause of infantile diarrhea and death in developing countries. The pathogenicity island locus of enterocyte effacement (LEE) is essential for EPEC to cause diarrhea. Besides EPEC, the LEE is also present in other gastrointestinal pathogens, most notably enterohemorrhagic E. coli (EHEC). Whereas transcriptional control of the LEE has been meticulously examined, posttranscriptional regulation, including the role of Hfq-dependent small RNAs, remains undercharacterized. However, the past few years have witnessed a surge in the identification of riboregulators of the LEE in EHEC. Contrastingly, the posttranscriptional regulatory landscape of EPEC remains cryptic. Here we demonstrate that the RNA-chaperone Hfq represses the LEE of EPEC by targeting the 5' untranslated leader region of grlR in the grlRA mRNA. Three conserved small regulatory RNAs (sRNAs)-MgrR, RyhB and McaS-are involved in the Hfq-dependent regulation of grlRA MgrR and RyhB exert their effects by directly base-pairing to the 5' region of grlR Whereas MgrR selectively represses grlR but activates grlA, RyhB represses gene expression from the entire grlRA transcript. Meanwhile, McaS appears to target the grlRA mRNA indirectly. Thus, our results provide the first definitive evidence that implicates multiple sRNAs in regulating the LEE and the resulting virulence of EPEC.


Asunto(s)
Escherichia coli Enteropatógena/genética , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/genética , Fosfoproteínas/genética , ARN Pequeño no Traducido/genética , Región de Flanqueo 5' , Secuencia de Bases , Sitios de Unión , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteína de Factor 1 del Huésped/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , ARN Mensajero/genética
9.
Artículo en Inglés | MEDLINE | ID: mdl-27709103

RESUMEN

Enterohemorrhagic and enteropathogenic Escherichia coli are gastrointestinal pathogens that disrupt the intestinal microvilli to form attaching and effacing (A/E) lesions on infected cells and cause diarrhea. This pathomorphological trait is encoded within the pathogenicity island locus of enterocyte effacement (LEE). The LEE houses a type 3 secretion system (T3SS), which upon assembly bridges the bacterial cytosol to that of the host and enables the bacterium to traffic dozens of effectors into the host where they hijack regulatory and signal transduction pathways and contribute to bacterial colonization and disease. Owing to the importance of the LEE to EHEC and EPEC pathogenesis, much of the research on these pathogens has centered on its regulation. To date, over 40 proteinaceous factors have been identified that control the LEE at various hierarchical levels of gene expression. In contrast, RNA-based regulatory mechanisms that converge on the LEE have only just begun to be unraveled. In this minireview, we highlight major breakthroughs in small RNAs (sRNAs)-dependent regulation of the LEE, with an emphasis on their mechanisms of action and/or LEE-encoded targets.


Asunto(s)
Escherichia coli Enterohemorrágica/genética , Escherichia coli Enteropatógena/genética , ARN Bacteriano/metabolismo , ARN Bacteriano/fisiología , Virulencia/genética , Diarrea/microbiología , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Islas Genómicas/genética , Proteína de Factor 1 del Huésped/metabolismo , Interacciones Huésped-Patógeno , Humanos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , ARN Bacteriano/genética , Transducción de Señal , Sistemas de Secreción Tipo III
10.
Biol Proced Online ; 18: 3, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26843851

RESUMEN

BACKGROUND: The ability to introduce site-specific mutations in bacterial pathogens is essential towards understanding their molecular mechanisms of pathogenicity. This has been greatly facilitated by the genetic engineering technique of recombineering. In recombineering, linear double- or single-stranded DNA molecules with two terminal homology arms are electroporated into hyperrecombinogenic bacteria that express a phage-encoded recombinase. The recombinase catalyzes the replacement of the endogenous allele with the exogenous allele to generate selectable or screenable recombinants. In particular, lambda red recombinase has been instrumental in engineering mutations to characterize the virulence arsenal of the attaching and effacing (A/E) pathogens enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC), and Citrobacter rodentium. Escherichia albertii is another member of this taxon; however, the virulence of E. albertii remains cryptic despite accumulating evidence that E. albertii is an emerging pathogen. Multiple retrospective studies have reported that a substantial number of EPEC and EHEC isolates (~15 %) that were previously incriminated in human outbreaks actually belong to the E. albertii lineage. Thus, there is increased urgency to reliably identify and rapidly engineer mutations in E. albertii to systematically characterize its virulence determinants. To the best of our knowledge not a single chromosomal gene has been altered by targeted mutagenesis in E. albertii since it was first isolated almost 25 years ago. This is disconcerting because an E. albertii outbreak could cause significant morbidity and mortality owing to our inadequate understanding of its virulence program. RESULTS: In this report we describe a modified lambda red recombineering protocol to mutagenize E. albertii. As proof of principle, we successfully deleted three distinct virulence-associated genetic loci - ler, grlRA, and hfq - and replaced each wild type allele by a mutant allele with an encodable drug resistance cassette bracketed by FRT sites. Subsequently, the FRT-site flanked drug resistance marker was evicted by FLP-dependent site-specific recombination to generate excisants containing a solitary FRT site. CONCLUSIONS: Our protocol will enable researchers to construct marked and unmarked genome-wide mutations in E. albertii, which, in turn, will illuminate its molecular mechanisms of pathogenicity and aid in developing appropriate preventative and therapeutic approaches to combat E. albertii outbreaks.

11.
J Bacteriol ; 195(16): 3640-50, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749980

RESUMEN

Cytochrome bd oxidase operons from more than 50 species of bacteria contain a short gene encoding a small protein that ranges from ∼30 to 50 amino acids and is predicted to localize to the cell membrane. Although cytochrome bd oxidases have been studied for more than 70 years, little is known about the role of this small protein, denoted CydX, in oxidase activity. Here we report that Escherichia coli mutants lacking CydX exhibit phenotypes associated with reduced oxidase activity. In addition, cell membrane extracts from ΔcydX mutant strains have reduced oxidase activity in vitro. Consistent with data showing that CydX is required for cytochrome bd oxidase activity, copurification experiments indicate that CydX interacts with the CydAB cytochrome bd oxidase complex. Together, these data support the hypothesis that CydX is a subunit of the CydAB cytochrome bd oxidase complex that is required for complex activity. The results of mutation analysis of CydX suggest that few individual amino acids in the small protein are essential for function, at least in the context of protein overexpression. In addition, the results of analysis of the paralogous small transmembrane protein AppX show that the two proteins could have some overlapping functionality in the cell and that both have the potential to interact with the CydAB complex.


Asunto(s)
Citocromos/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Grupo Citocromo b , Citocromos/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Datos de Secuencia Molecular , Mutación , Oxidorreductasas/genética , Fenotipo
12.
PLoS One ; 8(1): e54456, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23372726

RESUMEN

Enteropathogenic Escherichia coli (EPEC), enterohemorrhagic E. coli (EHEC) and enteroaggregative E. coli (EAEC) are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA), and indole-3-acetic acid (IAA), as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE), which encodes virulence factors that cause "attaching and effacing" (A/E) lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling.


Asunto(s)
Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/patogenicidad , Infecciones por Escherichia coli/prevención & control , Escherichia coli/patogenicidad , Ácidos Indolacéticos/farmacología , Indoles/farmacología , Adhesinas Bacterianas/biosíntesis , Animales , Adhesión Bacteriana/efectos de los fármacos , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/fisiología , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/aislamiento & purificación , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/aislamiento & purificación , Escherichia coli Enteropatógena/metabolismo , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Infecciones por Escherichia coli/mortalidad , Humanos , Ácidos Indolacéticos/aislamiento & purificación , Ácidos Indolacéticos/metabolismo , Indoles/aislamiento & purificación , Indoles/metabolismo , Ratones , Viabilidad Microbiana/efectos de los fármacos , Toxina Shiga/antagonistas & inhibidores , Toxina Shiga/biosíntesis , Análisis de Supervivencia , Virulencia , Factores de Virulencia/antagonistas & inhibidores , Factores de Virulencia/biosíntesis
13.
J Bacteriol ; 193(17): 4516-22, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21705596

RESUMEN

Enteropathogenic Escherichia coli(EPEC) requires the tnaA-encoded enzyme tryptophanase and its substrate tryptophan to synthesize diffusible exotoxins that kill the nematode Caenorhabditis elegans. Here, we demonstrate that the RNA-binding protein CsrA and the tryptophan permease TnaB coregulate tryptophanase activity, through mutually exclusive pathways, to stimulate toxin-mediated paralysis and killing of C. elegans.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Caenorhabditis elegans/microbiología , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/metabolismo , Exotoxinas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Triptofanasa/genética , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Animales , Secuencia de Bases , Escherichia coli Enteropatógena/enzimología , Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Operón , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Triptófano/metabolismo , Triptofanasa/metabolismo
14.
Trends Microbiol ; 19(5): 217-24, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21333542

RESUMEN

Bacteria evolve their capacity to cause disease by acquiring virulence genes that are usually clustered in discrete genetic modules termed pathogenicity islands (PAI). Stable integration of PAIs into pre-existing transcriptional networks coordinates expression from PAIs with ancestral genes in response to diverse environmental cues. Such transcriptional controls are evident in the regulation of the locus of enterocyte effacement (LEE), a PAI of enteropathogenic and enterohemorrhagic Escherichia coli. However, recent reports indicate that global post-transcriptional and post-translational regulators, including CsrA, Hfq and ClpXP, fine-tune the transcriptional output from the LEE. In this opinion article, we highlight recent advances in the understanding of post-transcriptional and post-translational regulation in attaching and effacing pathogens.


Asunto(s)
Adhesinas Bacterianas/biosíntesis , Escherichia coli Enterohemorrágica/genética , Escherichia coli Enterohemorrágica/metabolismo , Escherichia coli Enteropatógena/genética , Escherichia coli Enteropatógena/metabolismo , Proteínas de Escherichia coli/biosíntesis , Regulación Bacteriana de la Expresión Génica , Islas Genómicas , Escherichia coli Enterohemorrágica/patogenicidad , Escherichia coli Enteropatógena/patogenicidad , Humanos , Modelos Biológicos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Transcripción Genética
15.
Infect Immun ; 77(9): 3552-68, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19581394

RESUMEN

The attaching and effacing (A/E) pathogen enteropathogenic Escherichia coli (EPEC) forms characteristic actin-filled membranous protrusions upon infection of host cells termed pedestals. Here we examine the role of the RNA binding protein CsrA in the expression of virulence genes and proteins that are necessary for pedestal formation. The csrA mutant was defective in forming actin pedestals on epithelial cells and in disrupting transepithelial resistance across polarized epithelial cells. Consistent with reduced pedestal formation, secretion of the translocators EspA, EspB, and EspD and the effector Tir was substantially reduced in the csrA mutant. Purified CsrA specifically bound to the sepL espADB mRNA leader, and the corresponding transcript levels were reduced in the csrA mutant. In contrast, Tir synthesis was unaffected in the csrA mutant. Reduced secretion of Tir appeared to be in part due to decreased synthesis of EscD, an inner membrane architectural protein of the type III secretion system (TTSS) and EscF, a protein that forms the protruding needle complex of the TTSS. These effects were not mediated through the locus of enterocyte effacement (LEE) transcriptional regulator GrlA or Ler. In contrast to the csrA mutant, multicopy expression of csrA repressed transcription from LEE1, grlRA, LEE2, LEE5, escD, and LEE4, an effect mediated by GrlA and Ler. Consistent with its role in other organisms, CsrA also regulated flagellar motility and glycogen levels. Our findings suggest that CsrA governs virulence factor expression in an A/E pathogen by regulating mRNAs encoding translocators, effectors, or transcription factors.


Asunto(s)
Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/fisiología , Islas Genómicas , Fosfoproteínas/genética , Proteínas de Unión al ARN/fisiología , Proteínas Represoras/fisiología , Células 3T3 , Animales , Adhesión Bacteriana , Sitios de Unión , Polaridad Celular , Escherichia coli Enteropatógena/fisiología , Proteínas de Escherichia coli/metabolismo , Glucógeno/biosíntesis , Ratones , Operón , Receptores de Superficie Celular , Proteínas Represoras/genética , Transactivadores/genética
16.
Gastroenterology ; 137(4): 1435-47.e1-2, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19549526

RESUMEN

BACKGROUND & AIMS: Expression of the di/tripeptide transporter PepT1 has been observed in the colon under inflammatory conditions; however, the inducing factors and underlying mechanisms remain unknown. Here, we address the effects of pathogenic bacteria on colonic PepT1 expression together with its functional consequences. METHODS: Human colonic HT29-Cl.19A cells were infected with the attaching and effacing enteropathogenic Escherichia coli (EPEC). Wild-type and PepT1 transgenic mice or cultured colonic tissues derived from these mice were infected with Citrobacter rodentium, a murine attaching and effacing pathogen related to EPEC. RESULTS: EPEC induced PepT1 expression and activity in HT29-Cl.19A cells by intimately attaching to host cells through lipid rafts. Induction of PepT1 expression by EPEC required the transcription factor Cdx2. PepT1 expression reduced binding of EPEC to lipid rafts, as well as activation of nuclear factor-kappaB and mitogen-activated protein kinase and production of interleukin-8. Accordingly, ex vivo and in vivo experiments revealed that C rodentium induced colonic PepT1 expression and that, compared with their wild-type counterparts, PepT1 transgenic mice infected with C rodentium exhibited decreased bacterial colonization, production of proinflammatory cytokines, and neutrophil infiltration into the colon. CONCLUSIONS: Our findings demonstrate a molecular mechanism underlying the regulation of colonic PepT1 expression under pathologic conditions and reveal a novel role for PepT1 in host defense via its capacity to modulate bacterial-epithelial interactions and intestinal inflammation.


Asunto(s)
Citrobacter rodentium/patogenicidad , Colitis/metabolismo , Colon/metabolismo , Escherichia coli Enteropatógena/patogenicidad , Mucosa Intestinal/metabolismo , Simportadores/metabolismo , Animales , Adhesión Bacteriana , Factor de Transcripción CDX2 , Colitis/inmunología , Colitis/microbiología , Colon/inmunología , Colon/microbiología , Modelos Animales de Enfermedad , Células HT29 , Proteínas de Homeodominio/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Microdominios de Membrana/metabolismo , Microdominios de Membrana/microbiología , Ratones , Ratones Transgénicos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Infiltración Neutrófila , Transportador de Péptidos 1 , Regiones Promotoras Genéticas , ARN Mensajero/metabolismo , Simportadores/genética , Factores de Tiempo , Transcripción Genética , Transfección
17.
Curr Microbiol ; 56(5): 418-22, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18288523

RESUMEN

Previous studies have suggested that the airways of cystic fibrosis (CF) patients have elevated sodium chloride (NaCl) levels due to the malfunctioning of the CF transmembrane conductance regulator protein. For bacteria to survive in this high-salt environment, they must adjust by altering the regulation of gene expression. Among the different bacteria inhabiting the airways of CF patients is the opportunistic pathogen Burkholderia cenocepacia. Previous studies have indicated that B. cenocepacia produces a toxin and cable pili under high osmolar conditions. We used transposon mutagenesis to identify NaCl-regulated genes in the clinical strain B. cenocepacia K56-2. Six transconjugants were induced with increasing NaCl concentration. The DNA flanking the transposon was sequenced and five distinct open reading frames were identified encoding the following putative proteins: an integrase, an NAD-dependent deacetylase, TolB, an oxidoreductase, and a novel hypothetical protein. The collective results of this study provide important information about the physiology of B. cenocepacia when faced with osmotic stress and suggest the identity of significant virulence mechanisms in this opportunistic pathogen.


Asunto(s)
Infecciones por Burkholderia/fisiopatología , Complejo Burkholderia cepacia/genética , Complejo Burkholderia cepacia/patogenicidad , Regulación Bacteriana de la Expresión Génica/fisiología , Cloruro de Sodio/metabolismo , Animales , Complejo Burkholderia cepacia/metabolismo , Caenorhabditis elegans/microbiología , Elementos Transponibles de ADN , Modelos Animales de Enfermedad , Regulación Bacteriana de la Expresión Génica/genética , Genes Bacterianos/fisiología , Concentración Osmolar , Regulación hacia Arriba
18.
Proc Natl Acad Sci U S A ; 104(3): 1003-8, 2007 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-17215357

RESUMEN

The Providencia stuartii AarA protein is a member of the rhomboid family of intramembrane serine proteases and is required for the production of an unknown quorum-sensing molecule. In a screen to identify rhomboid-encoding genes from Proteus mirabilis, tatA was identified as a multicopy suppressor and restored extracellular signal production as well as complementing all other phenotypes of a Prov. stuartii aarA mutant. TatA is a component of the twin-arginine translocase (Tat) protein secretion pathway and likely forms a secretion pore. By contrast, the native tatA gene of Prov. stuartii in multicopy did not suppress an aarA mutation. We find that TatA in Prov. stuartii has a short N-terminal extension that was atypical of TatA proteins from most other bacteria. This extension was proteolytically removed by AarA both in vivo and in vitro. A Prov. stuartii TatA protein missing the first 7 aa restored the ability to rescue the aarA-dependent phenotypes. To verify that loss of the Tat system was responsible for the various phenotypes exhibited by an aarA mutant, a tatC-null allele was constructed. The tatC mutant exhibited the same phenotypes as an aarA mutant and was epistatic to aarA. These data provide a molecular explanation for the requirement of AarA in quorum-sensing and uncover a function for the Tat protein export system in the production of secreted signaling molecules. Finally, TatA represents a validated natural substrate for a prokaryotic rhomboid protease.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Providencia/enzimología , Percepción de Quorum , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Aminoácidos/genética , Aminoácidos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Transporte Biológico , Activación Enzimática , Dosificación de Gen , Expresión Génica , Proteínas de Transporte de Membrana/genética , Datos de Secuencia Molecular , Mutación/genética , Operón/genética , Fenotipo , Providencia/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/aislamiento & purificación , Alineación de Secuencia , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...