Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 14(17): 12192-12203, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38628475

RESUMEN

Rice husk (RH) is a common agricultural waste generated during the rice milling process; however, a major portion is either burned or disposed of in landfills, posing significant environmental risks. In this study, RH waste was transformed into bio-based catalysts via delignification cum in situ growth of MoS2 (DRH-MoS2) for efficient pollutant dye removal and microbial decontamination. The developed DRH-MoS2 exhibits nanoflower-like structures with a 2H-MoS2 phase and a narrow band gap of 1.37 eV, which showed strong evidence of photocatalytic activity. With the presence of abundant hydroxyl functionality, delignified rice husk (DRH) exhibits a malachite green (MG) dye adsorption capacity of 88 mg g-1. However, in situ growth of MoS2 nanosheets on DRH enhances MG degradation to 181 mg g-1 under dark conditions and 550 mg g-1 in the presence of light. Mechanistic insights reveal a synergistic adsorption-cum-degradation phenomenon, amplified by generation of reactive oxygen species during photodegradation which was confirmed from radical scavenging activity. Interestingly, DRH-MoS2 demonstrates potent antibacterial activity against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) with sustained photodegradation efficiency (>80%) over three cycles. The present work reports a cost-effective and scalable strategy for environmental remediation of real wastewater which usually contains both dye pollutants as well as microbes using abundantly available renewable resources such as sunlight and agricultural biomass wastes.

2.
Environ Sci Pollut Res Int ; 31(11): 17494-17510, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342834

RESUMEN

In this study, sugarcane bagasse (SB) was strategically subjected to a delignification process followed by the in situ growth of multi-layered molybdenum disulfide (MoS2) nanosheets with hexagonal phase (2H-phase) crystal structure via hydrothermal treatment. The MoS2 nanosheets underwent self-assembly to form nanoflower-like structures in the aligned cellulose inter-channels of delignified sugarcane bagasse (DSB), the mechanism of which was understood through FTIR and XPS spectroscopic studies. DSB, due to its porous morphology and abundant hydroxyl groups, shows remediation capabilities of methylene blue (MB) dye through physio-sorption but shows a low adsorption capacity of 80.21 mg/g. To improve the removal capacity, DSB after in situ growth of MoS2 (DSB-MoS2) shows enhanced dye degradation to 114.3 mg/g (in the dark) which further improved to 158.74 mg/g during photodegradation, due to catalytically active MoS2. Interestingly, DSB-MoS2 was capable of continuous dye degradation with recyclability for three cycles, reaching an efficiency of > 83%, along with a strong antibacterial response against Gram-positive Staphylococcus aureus (S.aureus) and Gram-negative Escherichia coli (E. coli). The present study introduces a unique strategy for the up-conversion of agricultural biomass into value-added bio-adsorbents, which can effectively and economically address the remediation of dyes with simultaneous microbial decontamination from polluted wastewater streams.


Asunto(s)
Contaminantes Ambientales , Saccharum , Molibdeno/química , Celulosa/química , Escherichia coli , Descontaminación , Saccharum/química , Colorantes
3.
Int J Pept Res Ther ; 28(5): 135, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911180

RESUMEN

Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...