Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6574, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852979

RESUMEN

The Arctic's rapid sea ice decline may influence global weather patterns, making the understanding of Arctic weather variability (WV) vital for accurate weather forecasting and analyzing extreme weather events. Quantifying this WV and its impacts under human-induced climate change remains a challenge. Here we develop a complexity-based approach and discover a strong statistical correlation between intraseasonal WV in the Arctic and the Arctic Oscillation. Our findings highlight an increased variability in daily Arctic sea ice, attributed to its decline accelerated by global warming. This weather instability can influence broader regional patterns via atmospheric teleconnections, elevating risks to human activities and weather forecast predictability. Our analyses reveal these teleconnections and a positive feedback loop between Arctic and global weather instabilities, offering insights into how Arctic changes affect global weather. This framework bridges complexity science, Arctic WV, and its widespread implications.

2.
Science ; 381(6661): 972-979, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37651524

RESUMEN

Enhanced warm, salty subarctic inflows drive high-latitude atlantification, which weakens oceanic stratification, amplifies heat fluxes, and reduces sea ice. In this work, we show that the atmospheric Arctic Dipole (AD) associated with anticyclonic winds over North America and cyclonic winds over Eurasia modulates inflows from the North Atlantic across the Nordic Seas. The alternating AD phases create a "switchgear mechanism." From 2007 to 2021, this switchgear mechanism weakened northward inflows and enhanced sea-ice export across Fram Strait and increased inflows throughout the Barents Sea. By favoring stronger Arctic Ocean circulation, transferring freshwater into the Amerasian Basin, boosting stratification, and lowering oceanic heat fluxes there after 2007, AD+ contributed to slowing sea-ice loss. A transition to an AD- phase may accelerate the Arctic sea-ice decline, which would further change the Arctic climate system.

3.
Glob Chang Biol ; 29(16): 4453-4455, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246616

RESUMEN

Rapid atmospheric warming and sea-ice retreat are driving widespread changes in Arctic ecosystems, among the most pervasive of which is the "greening of the Arctic"-an increase in the cover and biomass of vegetation observed by satellites across much of the Arctic tundra biome. Determining the drivers, impacts, and feedbacks of Arctic greening requires continued investment in robust field, remote-sensing, and model-based capabilities, and improved integration of the knowledge base of Arctic peoples. These tools and approaches support the triangulation of complex problems and the development of improved projections for the warmer Arctic tundra biome of the future.


Asunto(s)
Ecosistema , Tundra , Regiones Árticas , Biomasa , Cubierta de Hielo
4.
Heliyon ; 5(7): e02075, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31372541

RESUMEN

Fiber wireless (FiWi) access network which is also referred as hybrid wireless optical broadband access network is one of the modern architecture to solve the problem of bandwidth availability and flexibility simultaneously. It integrates wireless frontend with optical backend. In FiWi network most of component remains idle for large duration, hence efficiency is very crucial. To improve energy efficiency in FiWi many multiple access (MA) techniques had been implemented at backend. However inclusion of multiple access techniques usually incur problem of delay, as data transfer in such network takes place only in the assigned slot of access technique. In this paper a novel architecture is proposed for FiWi which implements wavelength agile hybrid multiple access at backend and radio agile access technique at frontend. Further to improve delay performance, bandwidth availability and utilization of resources; a new scheduling approach is proposed for multiple access techniques implemented at frontend as well as backend. Delay performance, wavelength availability and load handling capacity of proposed approach is compared with different hybrid multiple access architecture. To best of our knowledge, wavelength agile and radio agile MA has been used for the first time in FiWi, moreover the proposed scheduling approach implemented on MA provide promising results in terms of delay and resource utilization. The performance of proposed work is also evaluated in terms of service and reservation delay component to indicate its utility in terms of actual information content per frame. The result shows effectiveness of proposed architecture over other existing architectures.

5.
Appl Veg Sci ; 22(1): 150-167, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31130818

RESUMEN

QUESTIONS: How do plant communities on zonal loamy vs. sandy soils vary across the full maritime Arctic bioclimate gradient? How are plant communities of these areas related to existing vegetation units of the European Vegetation Classification? What are the main environmental factors controlling transitions of vegetation along the bioclimate gradient? LOCATION: 1700-km Eurasia Arctic Transect (EAT), Yamal Peninsula and Franz Josef Land (FJL), Russia. METHODS: The Braun-Blanquet approach was used to sample mesic loamy and sandy plots on 14 total study sites at six locations, one in each of the five Arctic bioclimate subzones and the forest-tundra transition. Trends in soil factors, cover of plant growth forms (PGFs) and species diversity were examined along the summer warmth index (SWI) gradient and on loamy and sandy soils. Classification and ordination were used to group the plots and to test relationships between vegetation and environmental factors. RESULTS: Clear, mostly non-linear, trends occurred for soil factors, vegetation structure and species diversity along the climate gradient. Cluster analysis revealed seven groups with clear relationships to subzone and soil texture. Clusters at the ends of the bioclimate gradient (forest-tundra and polar desert) had many highly diagnostic taxa, whereas clusters from the Yamal Peninsula had only a few. Axis 1 of a DCA was strongly correlated with latitude and summer warmth; Axis 2 was strongly correlated with soil moisture, percentage sand and landscape age. CONCLUSIONS: Summer temperature and soil texture have clear effects on tundra canopy structure and species composition, with consequences for ecosystem properties. Each layer of the plant canopy has a distinct region of peak abundance along the bioclimate gradient. The major vegetation types are weakly aligned with described classes of the European Vegetation Checklist, indicating a continuous floristic gradient rather than distinct subzone regions. The study provides ground-based vegetation data for satellite-based interpretations of the western maritime Eurasian Arctic, and the first vegetation data from Hayes Island, Franz Josef Land, which is strongly separated geographically and floristically from the rest of the gradient and most susceptible to on-going climate change.

6.
Heliyon ; 5(3): e01311, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30976667

RESUMEN

Explosive growth in the field of Information and Communication Technology demands an access technology which can serve users better Internet speed in "anytime anywhere" manner. Fiber Wireless (FiWi) access technology is one of the existing technologies that fulfills the current demands of users in cost-efficient manner. Some of the important issues of the FiWi network are ONU placement and energy saving. ONU placement issue affects the deployment cost and network performance while energy saving is the need for green technology. On taking consideration of these two issues we propose a whale optimization algorithm for ONU placement for FiWi network. The proposed algorithm optimizes the position of ONUs in such a manner that all deployed wireless routers can connect to their primary ONUs with minimum possible average communication distance. Simulation is performed for varying number of wireless routers to check the worthiness of the proposed algorithm. Results show that the proposed algorithm reduces the average communication distance between ONU and its associated wireless routers hence, it may offer the best way to deploy energy efficient FiWi network.

7.
Glob Chang Biol ; 25(7): 2382-2395, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30943321

RESUMEN

Seasonality in photosynthetic activity is a critical component of seasonal carbon, water, and energy cycles in the Earth system. This characteristic is a consequence of plant's adaptive evolutionary processes to a given set of environmental conditions. Changing climate in northern lands (>30°N) alters the state of climatic constraints on plant growth, and therefore, changes in the seasonality and carbon accumulation are anticipated. However, how photosynthetic seasonality evolved to its current state, and what role climatic constraints and their variability played in this process and ultimately in carbon cycle is still poorly understood due to its complexity. Here, we take the "laws of minimum" as a basis and introduce a new framework where the timing (day of year) of peak photosynthetic activity (DOYPmax ) acts as a proxy for plant's adaptive state to climatic constraints on its growth. Our analyses confirm that spatial variations in DOYPmax reflect spatial gradients in climatic constraints as well as seasonal maximum and total productivity. We find a widespread warming-induced advance in DOYPmax (-1.66 ± 0.30 days/decade, p < 0.001) across northern lands, indicating a spatiotemporal dynamism of climatic constraints to plant growth. We show that the observed changes in DOYPmax are associated with an increase in total gross primary productivity through enhanced carbon assimilation early in the growing season, which leads to an earlier phase shift in land-atmosphere carbon fluxes and an increase in their amplitude. Such changes are expected to continue in the future based on our analysis of earth system model projections. Our study provides a simplified, yet realistic framework based on first principles for the complex mechanisms by which various climatic factors constrain plant growth in northern ecosystems.


Asunto(s)
Ecosistema , Fotosíntesis , Ciclo del Carbono , Plantas , Estaciones del Año
8.
Sci Rep ; 6: 29504, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27404274

RESUMEN

The terrestrial water cycle contains large uncertainties that impact our understanding of water budgets and climate dynamics. Water storage is a key uncertainty in the boreal water budget, with tree water storage often ignored. The goal of this study is to quantify tree water content during the snowmelt and growing season periods for Alaskan and western Canadian boreal forests. Deciduous trees reached saturation between snowmelt and leaf-out, taking up 21-25% of the available snowmelt water, while coniferous trees removed <1%. We found that deciduous trees removed 17.8-20.9 billion m(3) of snowmelt water, which is equivalent to 8.7-10.2% of the Yukon River's annual discharge. Deciduous trees transpired 2-12% (0.4-2.2 billion m(3)) of the absorbed snowmelt water immediately after leaf-out, increasing favorable conditions for atmospheric convection, and an additional 10-30% (2.0-5.2 billion m(3)) between leaf-out and mid-summer. By 2100, boreal deciduous tree area is expected to increase by 1-15%, potentially resulting in an additional 0.3-3 billion m(3) of snowmelt water removed from the soil per year. This study is the first to show that deciduous tree water uptake of snowmelt water represents a large but overlooked aspect of the water balance in boreal watersheds.


Asunto(s)
Taiga , Árboles , Agua/análisis , Alaska , Canadá , Clima , Hojas de la Planta , Ríos , Estaciones del Año , Suelo
9.
Science ; 341(6145): 519-24, 2013 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-23908231

RESUMEN

After a decade with nine of the lowest arctic sea-ice minima on record, including the historically low minimum in 2012, we synthesize recent developments in the study of ecological responses to sea-ice decline. Sea-ice loss emerges as an important driver of marine and terrestrial ecological dynamics, influencing productivity, species interactions, population mixing, gene flow, and pathogen and disease transmission. Major challenges in the near future include assigning clearer attribution to sea ice as a primary driver of such dynamics, especially in terrestrial systems, and addressing pressures arising from human use of arctic coastal and near-shore areas as sea ice diminishes.


Asunto(s)
Cambio Climático , Cubierta de Hielo , Agua de Mar , Animales , Organismos Acuáticos , Regiones Árticas , Humanos , Invertebrados , Desarrollo de la Planta , Vertebrados
10.
Ecol Appl ; 23(8): 1745-64, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24555307

RESUMEN

This synthesis study assesses recent changes of Arctic Ocean physical parameters using a unique collection of observations from the 2000s and places them in the context of long-term climate trends and variability. Our analysis demonstrates that the 2000s were an exceptional decade with extraordinary upper Arctic Ocean freshening and intermediate Atlantic water warming. We note that the Arctic Ocean is characterized by large amplitude multi-decadal variability in addition to a long-term trend, making the link of observed changes to climate drivers problematic. However, the exceptional magnitude of recent high-latitude changes (not only oceanic, but also ice and atmospheric) strongly suggests that these recent changes signify a potentially irreversible shift of the Arctic Ocean to a new climate state. These changes have important implications for the Arctic Ocean's marine ecosystem, especially those components that are dependent on sea ice or that have temperature-dependent sensitivities or thresholds. Addressing these and other questions requires a carefully orchestrated combination of sustained multidisciplinary observations and advanced modeling.


Asunto(s)
Cambio Climático , Océanos y Mares , Regiones Árticas , Monitoreo del Ambiente , Agua Dulce , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...