Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Glycobiology ; 34(2)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38039077

RESUMEN

Phosphatidyl-myo-inositol mannosides (PIMs), Lipomannan (LM), and Lipoarabinomannan (LAM) are essential components of the cell envelopes of mycobacteria. At the beginning of the biosynthesis of these compounds, phosphatidylinositol (PI) is mannosylated and acylated by various enzymes to produce Ac1/2PIM4, which is used to synthesize either Ac1/2PIM6 or LM/LAM. The protein PimE, a membrane-bound glycosyltransferase (GT-C), catalyzes the addition of a mannose group to Ac1PIM4 to produce Ac1PIM5, using polyprenolphosphate mannose (PPM) as the mannose donor. PimE-deleted Mycobacterium smegmatis (Msmeg) showed structural deformity and increased antibiotic and copper sensitivity. Despite knowing that the mutation D58A caused inactivity in Msmeg, how PimE catalyzes the transfer of mannose from PPM to Ac1/2PIM4 remains unknown. In this study, analyzing the AlphaFold structure of PimE revealed the presence of a tunnel through the D58 residue with two differently charged gates. Molecular docking suggested PPM binds to the hydrophobic tunnel gate, whereas Ac1PIM4 binds to the positively charged tunnel gate. Molecular dynamics (MD) simulations further demonstrated the critical roles of the residues N55, F87, L89, Y163, Q165, K197, L198, R251, F277, W324, H326, and I375 in binding PPM and Ac1PIM4. The mutation D58A caused a faster release of PPM from the catalytic tunnel, explaining the loss of PimE activity. Along with a hypothetical mechanism of mannose transfer by PimE, we also observe the presence of tunnels through a negatively charged aspartate or glutamate with two differently-charged gates among most GT-C enzymes. Common hydrophobic gates of GT-C enzymes probably harbor sugar donors, whereas, differently-charged tunnel gates accommodate various sugar-acceptors.


Asunto(s)
Simulación de Dinámica Molecular , Mycobacterium , Manosa/química , Simulación del Acoplamiento Molecular , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Lipopolisacáridos/química
2.
Molecules ; 28(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38138601

RESUMEN

The uncontrolled spread of drug-resistant tuberculosis (DR-TB) clinical cases necessitates the urgent discovery of newer chemotypes with novel mechanisms of action. Here, we report the chemical synthesis of rationally designed novel transition-state analogues (TSAs) by targeting the cyclization (Cy) domain of phenyloxazoline synthase (MbtB), a key enzyme of the conditionally essential siderophore biosynthesis pathway. Following bio-assay-guided evaluation of TSA analogues preferentially in iron-deprived and iron-rich media to understand target preferentiality against a panel of pathogenic and non-pathogenic mycobacteria strains, we identified a hit, i.e., TSA-5. Molecular docking, dynamics, and MMPBSA calculations enabled us to comprehend TSA-5's stable binding at the active site pocket of MbtB_Cy and the results imply that the MbtB_Cy binding pocket has a strong affinity for electron-withdrawing functional groups and contributes to stable polar interactions between enzyme and ligand. Furthermore, enhanced intracellular killing efficacy (8 µg/mL) of TSA-5 against Mycobacterium aurum in infected macrophages is noted in comparison to moderate in vitro antimycobacterial efficacy (64 µg/mL) against M. aurum. TSA-5 also demonstrates whole-cell efflux pump inhibitory activity against Mycobacterium smegmatis. Identification of TSA-5 by focusing on the modular MbtB_Cy domain paves the way for accelerating novel anti-TB antibiotic discoveries.


Asunto(s)
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacología , Antibacterianos/metabolismo , Simulación del Acoplamiento Molecular , Hierro/metabolismo , Mycobacterium smegmatis , Antituberculosos/química
3.
J Biomol Struct Dyn ; : 1-17, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37965715

RESUMEN

MazEF Toxin-antitoxin (TA) systems are associated with the persistent phenotype of the pathogen, Mycobacterium tuberculosis (Mtb), aiding their survival. Though extensively studied, the mode of action between the antitoxin-toxin and DNA of this family remains largely unclear. Here, the important interactions between MazF7 toxin and MazE7 antitoxin, and how MazE7 binds its promoter/operator region have been studied. To elucidate this, molecular dynamics (MD) simulation has been performed on MazE7, MazF7, MazEF7, MazEF7-DNA, and MazE7-DNA complexes to investigate how MazF7 and DNA affect the conformational change and dynamics of MazE7 antitoxin. This study demonstrated that the MazE7 dimer is disordered and one monomer (Chain C) attains stability after binding to the MazF7 toxin. Both the monomers (Chain C and Chain D) however are stabilized when MazE7 binds to DNA. MazE7 is also observed to sterically inhibit tRNA from binding to MazF7, thus suppressing its toxic activity. Comparative structural analysis performed on all the available antitoxins/antitoxin-toxin-DNA structures revealed MazEF7-DNA mechanism was similar to another TA system, AtaRT_E.coli. Simulation performed on the crystal structures of AtaR, AtaT, AtaRT, AtaRT-DNA, and AtaR-DNA showed that the disordered AtaR antitoxin attains stability by AtaT and DNA binding similar to MazE7. Based on these analyses it can thus be hypothesized that the disordered antitoxins enable tighter toxin and DNA binding thus preventing accidental toxin activation. Overall, this study provides crucial structural and dynamic insights into the MazEF7 toxin-antitoxin system and should provide a basis for targeting this TA system in combating Mycobacterium tuberculosis.Communicated by Ramaswamy H. Sarma.

4.
Biochem Biophys Res Commun ; 621: 14-19, 2022 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-35809342

RESUMEN

The complex cellular envelope is one of the major reasons behind the survival in hostile conditions and the emergence of the drug-resisting properties of mycobacteria. Phosphatidyl-myo-inositol hexamannoside (PIM6), Lipomannan (LM), and Lipoarabinomannan (LAM) are important structural constituents of the cell envelope and have roles in modulating host immune functions. Phosphatidyl-myo-inositol (PI) is first mannosylated at the 2-position of the inositol group by phosphatidyl-myo-inositol mannosyltransferase A (PimA) to produce phosphatidyl-myo-inositol monomannoside (PIM1). This PIM1 is then further mannosylated at the 6-position of the inositol group by phosphatidyl-myo-inositol mannosyltransferase B' (PimB') utilizing GDP-mannose as the mannose-donor to synthesize phosphatidyl-myo-inositol dimannoside (PIM2) and GDP. Further mannosylation and acylation on PIM2 produce Ac1/2PIM4, which can then be converted to either Ac1/2PIM6 or LM/LAM. Detailed functional mechanism of how PimB' transfers the mannose sugar to PIM1 is not understood. Using molecular docking, the interactions of PimB' with the substrate PIM1 and the product PIM2 are analyzed here. Molecular dynamics (MD) simulations of PimB' with the substrates and the products were performed for 300ns to find out critical residues involved in the mannose-transfer reaction. Docking and MD analyses indicated the residues R206 and R210 bind both PIM1 and PIM2 and are critical in the mannose-transfer reaction. The residues 120HEVGWSMLPGS130 and 281RTRGGGL288 were involved in the transfer of PIM1 from the active site. The residues 18IGG20, K211, E290, G291, 294IV295, and E298 were also important in the mannosylation reaction. The crucial residues obtained from this study may help design novel drugs against mycobacterial PimB'.


Asunto(s)
Manosiltransferasas , Mycobacterium , Proteínas Bacterianas/metabolismo , Inositol , Manosa , Simulación del Acoplamiento Molecular , Fosfatidilinositoles/metabolismo
5.
Comput Biol Med ; 147: 105788, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35809412

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the worldwide spread of coronavirus disease 19 (COVID-19), and till now, it has caused death to more than 6.2 million people. Although various vaccines and drug candidates are being tested globally with limited to moderate success, a comprehensive therapeutic cure is yet to be achieved. In this study, we applied computational drug repurposing methods complemented with the analyses of the already existing gene expression data to find better therapeutics in treatment and recovery. Primarily, we identified the most crucial proteins of SARS-CoV-2 and host human cells responsible for viral infection and host response. An in-silico screening of the existing drugs was performed against the crucial proteins for SARS-CoV-2 infection, and a few existing drugs were shortlisted. Further, we analyzed the gene expression data of SARS-CoV-2 in human lung epithelial cells and investigated the molecules that can reverse the cellular mRNA expression profiles in the diseased state. LINCS L1000 and Comparative Toxicogenomics Database (CTD) were utilized to obtain two sets of compounds that can be used to counter SARS-CoV-2 infection from the gene expression perspective. Indomethacin, a nonsteroidal anti-inflammatory drug (NSAID), and Vitamin-A were found in two sets of compounds, and in the in-silico screening of existing drugs to treat SARS-CoV-2. Our in-silico findings on Indomethacin were further successfully validated by in-vitro testing in Vero CCL-81 cells with an IC50 of 12 µM. Along with these findings, we briefly discuss the possible roles of Indomethacin and Vitamin-A to counter the SARS-CoV-2 infection in humans.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico , Humanos , Indometacina/farmacología , Vitaminas
6.
FEBS Lett ; 596(20): 2678-2695, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35795993

RESUMEN

Mtb8.4, a secretory T-cell antigen of Mycobacterium tuberculosis, is important for providing an antigen-specific immune response. In this study, we showed Mtb8.4 to have both heme-binding and fibril-forming properties, using experimental and in silico methods. High absorbance at 410 nm and interaction with hemin-agarose demonstrated its heme-binding nature. Titration of Mtb8.4 with heme resulted in 1 : 1 stoichiometry. The heme-binding pocket in Mtb8.4 was identified by molecular modeling, and binding residues were predicted using molecular docking. The molecular dynamics simulations of apo- and heme-bound Mtb8.4 confirmed that the heme group forms a stable complex. Transmission electron microscopy analyses and dye-binding assays showed that Mtb8.4 forms fibers. Computational studies predicted that the C-terminal sequence (93 AAQYIGLVESV103 ) is important for forming fibers. In silico analyses further anticipated the probable epitope (82 AMAAQLQAV90 ) of Mtb8.4. The fiber-forming properties of Mtb8.4 could be advantageous from a vaccine perspective for aggregate/fibril-based vaccine delivery or it might influence the epitope presentation of Mtb8.4.


Asunto(s)
Mycobacterium tuberculosis , Antígenos Bacterianos , Peso Molecular , Simulación del Acoplamiento Molecular , Hemo , Linfocitos T , Epítopos
7.
ACS Omega ; 7(23): 19288-19304, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35721920

RESUMEN

Glycolipids like phosphatidylinositol hexamannosides (PIM6) and lipoglycans, such as lipomannan (LM) and lipoarabinomannan (LAM), play crucial roles in virulence, survival, and antibiotic resistance of various mycobacterial species. Phosphatidyl-myo-inositol mannosyltransferase A (PimA) catalyzes the transfer of the mannose moiety (M) from GDP-mannose (GDPM) to phosphatidyl-myo-inositol (PI) to synthesize GDP and phosphatidyl-myo-inositol monomannoside (PIM). This PIM is mannosylated, acylated, and further modified to give rise to the higher PIMs, LM, and LAM. It is yet to be known how PI, PIM, PI-GDPM, and PIM-GDP interact with PimA. Here, we report the docked structures of PI and PIM to understand how the substrates and the products interact with PimA. Using molecular dynamics (MD) simulations for 300 ns, we have investigated how various ligand-bound conformations change the dynamics of PimA. Our studies demonstrated the "open to closed" motions of PimA. We observed that PimA is least dynamic when bound to both GDPM and PI. MD simulations indicated that the loop residues 59-70 and the α-helical residues 73-86 of PimA play important roles while interacting with both PI and PIM. MD analyses also suggested that the residues Y9, P59, R68, L69, N97, R196, R201, K202, and R228 of PimA play significant roles in the mannose transfer reaction. Overall, docking studies and MD simulations provide crucial insights to design future therapeutic drugs against mycobacterial PimA.

8.
bioRxiv ; 2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35313575

RESUMEN

As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key towards sustenance. Here, we identify an evolutionary conserved E-L-L motif present within the HR2 domain of all human and non-human coronavirus spike (S) proteins that play a crucial role in stabilizing the post-fusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this E-L-L motif resulting in effective inhibition of SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy towards blocking S protein-mediated viral entry, mutations within the E-L-L motif rendered the protein completely resistant to the drug, establishing its specificity towards this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective towards all major variants of concerns of SARS-CoV-2 including beta, kappa, delta, and omicron. Together, we show that this conserved essential E-L-L motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.

9.
J Med Chem ; 65(1): 234-256, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34981940

RESUMEN

In this study, we have designed and synthesized pyrazoline analogues that partially mimic the structure of mycobactin, to address the requirement of novel therapeutics to tackle the emerging global challenge of antimicrobial resistance (AMR). Our investigation resulted in the identification of novel lead compounds 44 and 49 as potential mycobactin biosynthesis inhibitors against mycobacteria. Moreover, candidates efficiently eradicated intracellularly surviving mycobacteria. Thermofluorimetric analysis and molecular dynamics simulations suggested that compounds 44 and 49 bind to salicyl-AMP ligase (MbtA), a key enzyme in the mycobactin biosynthetic pathway. To the best of our knowledge, these are the first rationally designed mycobactin inhibitors to demonstrate an excellent in vivo pharmacokinetic profile. In addition, these compounds also exhibited more potent whole-cell efflux pump inhibition than known efflux pump inhibitors verapamil and chlorpromazine. Results from this study pave the way for the development of 3-(2-hydroxyphenyl)-5-(aryl)-pyrazolines as a new weapon against superbug-associated AMR challenges.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas de Transporte de Membrana/química , Mycobacterium tuberculosis/efectos de los fármacos , Oxazoles/química , Tuberculosis/tratamiento farmacológico , Animales , Antituberculosos/química , Antituberculosos/farmacocinética , Bloqueadores de los Canales de Calcio/farmacología , Transporte Iónico , Quelantes del Hierro/farmacología , Masculino , Ratas , Ratas Sprague-Dawley , Distribución Tisular , Tuberculosis/microbiología , Verapamilo/farmacología
10.
J Biomol Struct Dyn ; 40(8): 3711-3730, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33251975

RESUMEN

Pandemic COVID-19 infections have spread throughout the world. There is no effective treatment against this disease. Viral RNA-dependent RNA polymerase (RdRp) catalyzes the replication of RNA from RNA and the main protease (Mpro) has a role in the processing of polyproteins that are translated from the RNA of SARS-CoV-2, and thus these two enzymes are strong candidates for targeting by anti-viral drugs. Small molecules such as lopinavir and favipiravir significantly inhibit the activity of Mpro and RdRp in vitro. Studies have shown that structurally modified lopinavir, favipiravir, and other similar compounds can inhibit COVID-19 main protease (Mpro) and RNA-dependent RNA polymerase (RdRp). In this study, lopinavir and its structurally similar compounds were chosen to bind the main protease, and favipiravir was chosen to target RNA-dependent RNA polymerase. Molecular docking and the quantitative structure-activity relationships (QSAR) study revealed that the selected candidates have favorable binding affinity but less druggable properties. To improve the druggability, four structural analogues of lopinavir and one structural analogue of favipiravir was designed by structural modification. Molecular interaction analyses have displayed that lopinavir and favipiravir analogues interact with the active site residues of Mpro and RdRp, respectively. Absorption, distribution, metabolism, excretion and toxicity (ADMET) properties, medicinal chemistry profile, and physicochemical features were shown that all structurally modified analogues are less toxic and contain high druggable properties than the selected candidates. Subsequently, 50 ns molecular dynamics simulation of the top four docked complexes demonstrated that CID44271905, a lopinavir analogue, forms the most stable complex with the Mpro. Further MMPBSA analyses using the MD trajectories also confirmed the higher binding affinity of CID44271905 towards Mpro. In summary, this study demonstrates a new way to identify leads for novel anti-viral drugs against COVID-19. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Simulación de Dinámica Molecular , Humanos , Amidas , Antivirales/farmacología , Lopinavir/farmacología , Simulación del Acoplamiento Molecular , Péptido Hidrolasas , Inhibidores de Proteasas/farmacología , Pirazinas , Relación Estructura-Actividad Cuantitativa , ARN , ARN Polimerasa Dependiente del ARN , SARS-CoV-2
11.
PNAS Nexus ; 1(5): pgac198, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712339

RESUMEN

As newer variants of SARS-CoV-2 continue to pose major threats to global human health and economy, identifying novel druggable antiviral targets is the key toward sustenance. Here, we identify an evolutionarily conserved "Ex3Lx6L" ("E-L-L") motif present within the HR2 domain of all human and nonhuman coronavirus spike (S) proteins that play a crucial role in stabilizing its postfusion six-helix bundle (6-HB) structure and thus, fusion-mediated viral entry. Mutations within this motif reduce the fusogenicity of the S protein without affecting its stability or membrane localization. We found that posaconazole, an FDA-approved drug, binds to this "E-L-L" motif and impedes the formation of 6-HB, thus effectively inhibiting SARS-CoV-2 infection in cells. While posaconazole exhibits high efficacy in blocking S protein-mediated viral entry, mutations within the "E-L-L" motif rendered the protein completely resistant to the drug, establishing its specificity toward this motif. Our data demonstrate that posaconazole restricts early stages of infection through specific inhibition of membrane fusion and viral genome release into the host cell and is equally effective toward all major variants of concerns of SARS-CoV-2, including Beta, Kappa, Delta, and Omicron. Together, we show that this conserved essential "E-L-L" motif is an ideal target for the development of prophylactic and therapeutic interventions against SARS-CoV-2.

12.
Protein J ; 40(5): 741-755, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33840009

RESUMEN

Post-translational modifications (PTMs) impart structural heterogeneities that can alter plasma proteins' functions in various pathophysiological processes. However, the identification and mapping of PTMs in untargeted plasma proteomics is still a challenge due to the presence of diverse components in blood. Here, we report a label-free method for identifying and mapping hydroxylated proteins using tandem mass spectrometry (MS/MS) in the human plasma sample. Our untargeted proteomics approach led us to identify 676 de novo sequenced peptides in human plasma that correspond to 201 proteins, out of which 11 plasma proteins were found to be hydroxylated. Among these hydroxylated proteins, Immunoglobulin A1 (IgA1) heavy chain was found to be modified at residue 285 (Pro285 to Hyp285), which was further validated by MS/MS study. Molecular dynamics (MD) simulation analysis demonstrated that this proline hydroxylation in IgA1 caused both local and global structural changes. Overall, this study provides a comprehensive understanding of the protein profile containing Hyp PTMs in human plasma and shows the future perspective of identifying and discriminating Hyp PTM in the normal and the diseased proteomes.


Asunto(s)
Proteínas Sanguíneas , Hidroxiprolina , Procesamiento Proteico-Postraduccional , Proteoma , Proteómica , Proteínas Sanguíneas/análisis , Proteínas Sanguíneas/metabolismo , Cromatografía Liquida , Humanos , Hidroxiprolina/análisis , Hidroxiprolina/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Espectrometría de Masas en Tándem
13.
Curr Protoc Mol Biol ; 118: 8.6.1-8.6.29, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28369677

RESUMEN

Seamless (i.e., without unwanted DNA sequences) mutant bacterial artificial chromosomes (BACs) generated via recombination-mediated genetic engineering (recombineering) are better suited to study gene function compared to complementary DNA (cDNA) because they contain only the specific mutation and provide all the regulatory sequences required for in vivo gene expression. However, precisely mutated BACs are typically rare (∼1:1,000 to 1:100,000), making their isolation quite challenging. Although these BACs have been classically isolated by linking the mutation to additional genes, i.e., selectable markers, this approach is prone to false positives and is labor-intensive because it requires the subsequent removal of the selectable marker. We created Founder Principle-driven Enrichment (FPE), a method based on the population genetics "founder principle," to directly isolate rare mutant BACs, without any selectable marker, from liquid cultures via the polymerase chain reaction (PCR). Here, we provide a detailed description of FPE, including protocols for BAC recombineering and PCR screening. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Cromosomas Artificiales Bacterianos/genética , Escherichia coli/genética , Mutación , Ingeniería Genética/métodos , Reacción en Cadena de la Polimerasa/métodos , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...