Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infection ; 52(2): 345-384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38270780

RESUMEN

PURPOSE: This study aims to comprehensively review the multifaceted factors underlying the successful colonization and infection process of Helicobacter pylori (H. pylori), a prominent Gram-negative pathogen in humans. The focus is on elucidating the functions, mechanisms, genetic regulation, and potential cross-interactions of these elements. METHODS: Employing a literature review approach, this study examines the intricate interactions between H. pylori and its host. It delves into virulence factors like VacA, CagA, DupA, Urease, along with phase variable genes, such as babA, babC, hopZ, etc., giving insights about the bacterial perspective of the infection The association of these factors with the infection has also been added in the form of statistical data via Funnel and Forest plots, citing the potential of the virulence and also adding an aspect of geographical biasness to the virulence factors. The biochemical characteristics and clinical relevance of these factors and their effects on host cells are individually examined, both comprehensively and statistically. RESULTS: H. pylori is a Gram-negative, spiral bacterium that successfully colonises the stomach of more than half of the world's population, causing peptic ulcers, gastric cancer, MALT lymphoma, and other gastro-duodenal disorders. The clinical outcomes of H. pylori infection are influenced by a complex interplay between virulence factors and phase variable genes produced by the infecting strain and the host genetic background. A meta-analysis of the prevalence of all the major virulence factors has also been appended. CONCLUSION: This study illuminates the diverse elements contributing to H. pylori's colonization and infection. The interplay between virulence factors, phase variable genes, and host genetics determines the outcome of the infection. Despite biochemical insights into many factors, their comprehensive regulation remains an understudied area. By offering a panoramic view of these factors and their functions, this study enhances understanding of the bacterium's perspective, i.e. H. pylori's journey from infiltration to successful establishment within the host's stomach.


Asunto(s)
Helicobacter pylori , Úlcera Péptica , Neoplasias Gástricas , Humanos , Virulencia/genética , Helicobacter pylori/genética , Úlcera Péptica/microbiología , Factores de Virulencia/genética , Proteínas Bacterianas/genética , Antígenos Bacterianos/genética
2.
Arch Virol ; 168(10): 264, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787913

RESUMEN

Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis worldwide. The emergence of new genotypes of the virus and a high rate of mutation make it necessary to develop alternative treatment strategies against this deadly pathogen. Although the antiviral properties of Atropa belladonna and some of its active components, such as atropine and scopolamine, have been studied, the effect of another important component, hyoscyamine, against JEV infection has not yet been investigated. In this study, we investigated the antiviral effect of hyoscyamine against JEV and its immunomodulatory activity in embryonated chicken eggs. Pretreatment with hyoscyamine sulphate resulted in a significant decrease in the viral load in both chorioallantoic membrane (CAM) and brain tissues at 48 and 96 hours postinfection. In silico studies showed stable binding and interaction between hyoscyamine and non-structural protein 5 (NS5), suggesting that this could be the basis of its antiviral effect. Embryonated eggs pretreated with hyoscyamine sulphate showed upregulation of Toll-like receptor 3 (TLR3), TLR7, TLR8, interleukin 4 (IL-4), and IL-10 as well as interferons and regulatory factors. Hyoscyamine sulphate was also found to cause significant downregulation of TLR4. The potential use of hyoscyamine for controlling JEV replication and its dissemination to the brain suggest that it may be a promising therapy option against JEV in the future.


Asunto(s)
Virus de la Encefalitis Japonesa (Especie) , Hiosciamina , Animales , Pollos , Atropina , Antivirales/farmacología
3.
J Biomol Struct Dyn ; : 1-20, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37505085

RESUMEN

Posttranslational protein arginylation has been shown as a key regulator of cellular processes in eukaryotes by affecting protein stability, function, and interaction with macromolecules. Thus, the enzyme Arginyltransferase and its targets, are of immense interest to modulate cellular processes in the normal and diseased state. While the study on the effect of this posttranslational modification in mammalian systems gained momentum in the recent times, the detail structures of human ATE1 (hATE1) enzymes has not been investigated so far. Thus, the purpose of this study was to predict the overall structure and the structure function relationship of hATE1 enzyme and its four isoforms. The structure of four ATE1 isoforms were modelled and were docked with 3'end of the Arg-tRNAArg which acts as arginine donor in the arginylation reaction, followed by MD simulation. All the isoforms showed two distinct domains. A compact domain and a somewhat flexible domain as observed in the RMSF plot. A distinct similarity in the overall structure and interacting residues were observed between hATE1-1 and X4 compared to hATE1-2 and 5. While the putative active sites of all the hATE1 isoforms were located at the same pocket, differences were observed in the active site residues across hATE1 isoforms suggesting different substrate specificity. Mining of nsSNPs showed several nsSNPs including cancer associated SNPs with deleterious consequences on hATE1 structure and function. Thus, the current study for the first time shows the structural differences in the mammalian ATE1 isoforms and their possible implications in the function of these proteins.Communicated by Ramaswamy H. Sarma.

4.
Curr Diab Rep ; 23(8): 195-205, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37213058

RESUMEN

PURPOSE OF REVIEW: This review aims to analyse the consistency of reports suggesting the role of Diabetes Mellitus in the pathogenesis of Helicobacter pylori (H. pylori). RECENT FINDINGS: There have been numerous controversies citing the prevalence of H. pylori infections in patients suffering from type 2 diabetes mellitus (T2DM). This review investigates the possible crosstalk between H. pylori infections and T2DM and also designs a meta-analysis to quantify the association. Subgroup analyses have also been conducted to deduce factors like geography and testing techniques, in playing a role in stratification analysis. Based on a scientific literature survey and meta-analysis of databases from 1996 to 2022, a trend towards more frequent H. pylori infections in patients with diabetes mellitus was observed. The highly diversified nature of H. pylori infections across age, gender, and geographical regions requires large interventional studies to evaluate its long-term association with diabetes mellitus. Further possible linkage of the prevalence of diabetes mellitus concomitant with that of H. pylori infected patients has also been delineated in the review.


Asunto(s)
Diabetes Mellitus Tipo 2 , Infecciones por Helicobacter , Helicobacter pylori , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/epidemiología , Infecciones por Helicobacter/patología , Prevalencia , Causalidad
5.
Appl Biochem Biotechnol ; 193(6): 1654-1674, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33620666

RESUMEN

Suitable recognition of invasive microorganisms is a crucial factor for evoking a strong immune response that can combat the pathogen. Toll-like receptors (TLRs) play a pivotal role in the induction of this innate immune response through stimulation of interferons (IFNs) that control viral replication in the host via distinct signaling pathways. Though the antiviral property of Atropa belladonna has been established, yet the role of one of its active components scopolamine in modulating various factors of the innate immune branch has not yet been investigated until date. Thus, the present study was conducted to assess the antiviral effects of scopolamine and its immunomodulatory role against Japanese encephalitis virus (JEV) infections in embryonated chick. Pre-treatment with scopolamine hydrobromide showed a significant decrease in the viral loads of chorioallantoic membrane (CAM) and brain tissues. Molecular docking analysis revealed that scopolamine hydrobromide binds to the active site of non-structural protein 5 (NS5) that has enzymatic activities required for replication of JEV, making it a highly promising chemical compound against the virus. The binding contributions of different amino acid residues at or near the active site suggest a potential binding of this compound. Pre-treatment with the scopolamine hydrobromide showed significant upregulation of different TLRs like TLR3, TLR7, and TLR8, interleukins like IL-4, and IL-10, as well as IFNs and their regulatory factors. However, virus-infected tissues (direct infection group) exhibited higher TLR4 expression as compared to scopolamine hydrobromide pre-treated, virus-infected tissues (medicine pre-treated group). These results indicate that scopolamine hydrobromide contributes much to launch antiviral effects by remoulding the TLR and IFN signaling pathways that are involved in sensing and initiating the much-needed anti-JEV responses.


Asunto(s)
Proteínas Aviares/metabolismo , Virus de la Encefalitis Japonesa (Especie)/metabolismo , Encefalitis Japonesa/tratamiento farmacológico , Escopolamina/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Atropa belladonna/química , Embrión de Pollo , Encefalitis Japonesa/metabolismo , Escopolamina/química
6.
Curr Microbiol ; 78(2): 435-448, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33392670

RESUMEN

The newly identified 2019 novel coronavirus (SARS-CoV-2) has become a public health concern globally posing a significant threat to human health and economy and creating an unprecedented crisis in all spheres of the global life. Emergence of new genotypes of SARS-CoV during the last few years has pointed out the limited efficacy of available vaccines and antivirals, constraining the global response to the COVID-19 outburst to largely monitoring/containment. There is high priority for treatment regimes and new potential therapeutic and vaccine strategies. Several candidates have shown promising outcomes in various in vitro and in vivo models. In addition, clinical trials are in progress to test conceivable therapies showing promising outcomes in various in vivo studies. Unfortunately, very little information is available in the scientific scope which offers details to the diverse strategies being targeted to fight the pandemic, particularly with respect to the molecular targets. This review article summarizes and highlights the ongoing advances and approaches that are being carried out across the globe in designing vaccines and novel therapeutics, with particular reference to the previous knowledge gained from other viral infections like with the earlier SARS and MERS-CoV. A detailed knowledge may pave the way to combat this pandemic COVID-19 as well as prevent similar deadly epidemics in future.


Asunto(s)
Antivirales/uso terapéutico , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Pandemias/prevención & control , SARS-CoV-2/inmunología , COVID-19/terapia , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...