Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 618-627, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222499

RESUMEN

Biocompatibility and transient nature of electronic devices have been the matter of attention in recent times due to their immense potential for sustainable solutions toward hazardous e-wastes. In order to fulfill the requirement of high-density data-storage devices due to explosive growth in digital data, a resistive switching (RS)-based memory device could be the promising alternative to the present Si-based electronics. In this research work, we employed a biocompatible enzymatic protein lysozyme (Lyso) as the active layer to design a RS memory device having a device structure Au/Lyso/ITO. Interestingly the device showed transient, WORM memory behavior. It has been observed that the WORM memory performance of the device was very good with high memory window (2.78 × 102), data retention (up to 300 min), device yield (∼73.8%), read cyclability, as well as very high device stability (experimentally >700 days, extrapolated to 3000 days). Bias-induced charge trapping followed by conducting filament formation was the key behind such switching behavior. Transient behavior analysis showed that electronic as well as optical behaviors completely disappeared after 10 s dissolution of the device in luke warm water. Cytotoxicity of the as-prepared device was tested by challenging two environmentally derived bacteria, S. aureus and P. aeruginosa, and was found to have no biocidal effects. Hence, the device would cause no harm to the microbial flora when it is discarded. As a whole, this work suggests that Lyso-based WORM memory device could play a key role for the design of transient WORM memory device for sustainable electronic applications.

2.
RSC Adv ; 13(38): 26330-26343, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37671340

RESUMEN

Non-volatile memory devices using organic materials have attracted much attention due to their excellent scalability, fast switching speed, low power consumption, low cost etc. Here, we report both volatile as well as non-volatile resistive switching behavior of p-di[3,3'-bis(2-methylindolyl)methane]benzene (Indole2) and its mixture with stearic acid (SA). Previously, we have reported the bipolar resistive switching (BRS) behavior using 1,4-bis(di(1H-indol-3-yl)methyl)benzene (Indole1) molecules under ambient conditions [Langmuir 37 (2021) 4449-4459] and complementary resistive switching (CRS) behavior when the device was exposed to 353 K or higher temperature [Langmuir 38 (2022) 9229-9238]. However, the present study revealed that when the H of -NH group of Indole1 is replaced by -CH3, the resultant Indole2 molecule-based device showed volatile threshold switching behaviour. On the other hand, when Indole2 is mixed with SA at a particular mole fraction, dynamic evolution of an Au/Indole2-SA/ITO device from volatile to non-volatile switching occurred with very good device stability (>285 days), memory window (6.69 × 102), endurance (210 times), data retention (6.8 × 104 s) and device yield of the order of 78.5%. Trap controlled SCLC as well as electric field driven conduction was the key behind the observed switching behaviour of the devices. In the active layer, trap centers due to the SA network may be responsible for non-volatile characteristics of the device. Observed non-volatile switching may be a potential candidate for write once read many (WORM) memory applications in future.

3.
Langmuir ; 38(30): 9229-9238, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35862877

RESUMEN

Complementary resistive switching (CRS) devices are more advantageous compared to bipolar resistive switching (BRS) devices for memory applications as they can minimize the sneak path problem observed in the case of BRS having a crossbar array structure. Here, we report the CRS behavior of 1,4-bis(di(1H-indol-3-yl)methyl)benzene (Indole1) molecules. Our earlier study revealed that Au/Indole1/Indium tin oxide (ITO) devices showed BRS under ambient conditions. However, the present investigations revealed that when the device is exposed to 353 K or higher temperatures, dynamic evolution of the Au/Indole1/ITO device from BRS to CRS occurred with a very good memory window (∼103), data retention (5.1 × 103 s), stability (50 days), and device yield (∼ 60%). This work explores the application possibility of indole derivatives toward future ultradense resistive random access memory.

4.
ACS Omega ; 7(21): 17583-17592, 2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35664573

RESUMEN

In the present communication, we have investigated the interaction between a biomembrane component 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and a coagulating protein protamine sulfate (PS) using the Langmuir-Blodgett (LB) technique. The π-A isotherm, π-t characteristics, and analysis of isotherm curves suggested that PS strongly interacted with DOPC, affecting the fluidity of the DOPC layer. Electrical characterization indicates that PS as well as the PS-DOPC film showed resistive switching behavior suitable for Write Once Read Many (WORM) memory application. Trap-controlled space charge-limited conduction (SCLC) was the key mechanism behind such observed switching. The presence of DOPC affected the SCLC process, leading to lowering of threshold voltage (V Th), which is advantageous in terms of lower power consumption.

5.
Langmuir ; 37(15): 4449-4459, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33821655

RESUMEN

Bipolar resistive switching using organic molecule is very promising for memory applications owing to their advantages, such as simple device structure, low manufacturing cost, stability, and flexibility. Herein we report Langmuir-Blodgett (LB) and spin-coated-film-based bipolar resistive switching devices using organic material 1,4-bis(di(1H-indol-3-yl)methyl)benzene (Indole1). The pressure-area per molecule isotherm (π-A), Brewster angle microscopy (BAM), atomic force microscopy (AFM), and scanning electron microscopy (SEM) were used to formulate an idea about the organization and morphology of the organic material onto thin films. On the basis of the device structure and measurement protocol, it is observed that the device made up of Indole1 shows nonvolatile resistive random access memory (RRAM) behavior with a very high memory window (∼106), data sustainability (5400 s), device yield (86.7%), and repeatability. The oxidation-reduction process and electric-field-driven conduction are the keys behind such switching behavior. Because of very good data retention, repeatability, stability, and a high device yield, the switching device designed using compound Indole1 may be a potential candidate for memory applications.

6.
Langmuir ; 33(34): 8383-8394, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28791869

RESUMEN

In this communication, we report the design and synthesis as well as the supramolecular assembly behavior of a 2,4,5-triaryl imidazole derivative (compound 1) at the air-water interface and in thin films using Langmuir-Blodgett (LB) technique. The main idea for such a chemical structure is that the long alkyl chain and N-H of the imidazole core may help to form supramolecular architecture through the hydrophobic-hydrophobic interaction and hydrogen bonding, respectively. Accordingly, the interfacial behavior as well as morphology of 1 in thin films were studied through a series of characterization methods such as surface pressure-area (π-A) isotherm, hysteresis analysis, ultraviolet-visible (UV-vis) absorption and steady-state fluorescence spectroscopies, Fourier transform infrared, X-ray diffraction, Brewster angle microscopy (BAM), and atomic force microscopy (AFM) measurements, and so forth. Pressure-area isotherm is an indication toward the formation of supramolecular nanostructures instead of an ideal monolayer at the air-water interface. This has been confirmed by the hysteresis analysis and BAM measurement at the air-water interface. AFM images of 1 in the LB monolayer exhibits the formation of supramolecular nanowires as well as nanorods. By controlling different film-forming parameters, it becomes possible to manipulate these nanostructures. With the passage of time, the nanowires come close to each other and become straight. Similarly, nanorods come close to each other and form bundles of several rods in the LB films. H-bonding, J-aggregation, as well as compression during film formation might play a key role in the formation of such nanostructures. Electrical switching behavior of compound 1 was also observed because of the presence of an electron donor-acceptor system in 1. This type of organic switching behavior may be promising for next-generation organic electronics.

7.
Artículo en Inglés | MEDLINE | ID: mdl-26722674

RESUMEN

Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.


Asunto(s)
Naranja de Acridina/química , Coloides/química , Colorantes Fluorescentes/química , Grafito/química , Nanoestructuras/química , Óxidos/química , Adsorción , Cationes/química , Dimerización , Fluorescencia , Nanoestructuras/ultraestructura , Electricidad Estática
8.
J Org Chem ; 80(13): 6776-83, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26036359

RESUMEN

Iron(III)-mediated radical nitration of bisarylsulfonyl hydrazones is described. In this protocol, the nontoxic and inexpensive Fe(NO3)3·9H2O plays a dual role as catalyst as well as nitro source. The mild conditions, broad substrate scope, and the functional group compatibility are the significant features. The reaction pathway has been demonstrated using DFT calculations, and the products can be subsequently converted into oximes using SnCl2·2H2O in high yields.

9.
J Mol Model ; 21(4): 69, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25750024

RESUMEN

In the present work, theoretical study on the mechanism and kinetics of the gas-phase reactions of CF3CF2CH2OCH3 (HFE-365mcf3) with the OH radicals have been performed using meta-hybrid modern density functional M06-2X in conjunction with 6-31+G(d,p) basis set. Reaction profiles for OH-initiated hydrogen abstraction are modeled including the formation of pre-reactive and post-reactive complexes at entrance and exit channels. Our calculations reveal that hydrogen abstraction from the -CH2 group is thermodynamically more facile than that from the -CH3 group. This is further ascertained by the calculated C-H bond dissociation energy of CF3CF2CH2OCH3 molecule. The rate constants of the titled reactions are computed over the temperature range of 250-450 K. The calculated rate constant value at 298 K is found to be in reasonable agreement with the experimental results. The atmospheric life time of HFE-365mcf3 is estimated to be 42 days. The atmospheric fate of the alkoxy radicals, CF3CF2CH(O(•))OCH3 and CF3CF2CH2OCH2O(•) are also investigated for the first time using the same level of theory. Out of three plausible decomposition channels, our results clearly point out that reaction with O2 is the dominant atmospheric sink for the decomposition of CF3CF2CH(O(•))OCH3 radical in the atmosphere.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...