Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 610(7931): 356-365, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198802

RESUMEN

Hepatocellular carcinoma (HCC), the fourth leading cause of cancer mortality worldwide, develops almost exclusively in patients with chronic liver disease and advanced fibrosis1,2. Here we interrogated functions of hepatic stellate cells (HSCs), the main source of liver fibroblasts3, during hepatocarcinogenesis. Genetic depletion, activation or inhibition of HSCs in mouse models of HCC revealed their overall tumour-promoting role. HSCs were enriched in the preneoplastic environment, where they closely interacted with hepatocytes and modulated hepatocarcinogenesis by regulating hepatocyte proliferation and death. Analyses of mouse and human HSC subpopulations by single-cell RNA sequencing together with genetic ablation of subpopulation-enriched mediators revealed dual functions of HSCs in hepatocarcinogenesis. Hepatocyte growth factor, enriched in quiescent and cytokine-producing HSCs, protected against hepatocyte death and HCC development. By contrast, type I collagen, enriched in activated myofibroblastic HSCs, promoted proliferation and tumour development through increased stiffness and TAZ activation in pretumoural hepatocytes and through activation of discoidin domain receptor 1 in established tumours. An increased HSC imbalance between cytokine-producing HSCs and myofibroblastic HSCs during liver disease progression was associated with increased HCC risk in patients. In summary, the dynamic shift in HSC subpopulations and their mediators during chronic liver disease is associated with a switch from HCC protection to HCC promotion.


Asunto(s)
Carcinogénesis , Carcinoma Hepatocelular , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Animales , Carcinogénesis/patología , Carcinoma Hepatocelular/patología , Proliferación Celular , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Progresión de la Enfermedad , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Hepatocitos , Humanos , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Ratones , Miofibroblastos/patología
2.
Adv Cancer Res ; 156: 201-226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35961700

RESUMEN

Cancer-associated fibroblasts (CAFs) are one of the most abundant stromal cell type in the tumor microenvironment (TME) of intrahepatic cholangiocarcinoma (iCCA), where they are actively involved in cancer progression through a complex network of interactions with other stromal cells. The majority of the studies investigating CAFs in iCCA have focused their attention on CAF tumor-promoting roles, remarking their potential as therapeutic targets. However, indiscriminate targeting of CAFs in other desmoplastic tumors has ended in failure with no effects or even accelerated cancer progression and reduced survival, indicating the urgent need to better understand the nuances and functions of CAFs to avoid deleterious effects. Indeed, recent single cell RNA sequencing studies have shown that heterogeneous CAF subpopulations coexist in the same tumor, some promoting- and other restricting- tumor growth. Moreover, recent studies have shown that in iCCA, diverse CAF subtypes interact differently with the cells of the TME, suggesting that CAFs may dynamically change their phenotypes during tumor progression, a field that remains uninvestigated. The characterization of heterogenous CAF subpopulations and their functionality, will provide a feasible and safer approach to facilitate the development of new therapeutic approaches aimed at targeting CAFs and their interactions with other stromal cells in the TME rather than solely tumor cells in iCCA. Here, we discuss the origin of CAFs, as well as their heterogeneity, plasticity, mechanisms and targeting strategies to provide a brief snapshot of the current knowledge in iCCA.


Asunto(s)
Neoplasias de los Conductos Biliares , Fibroblastos Asociados al Cáncer , Colangiocarcinoma , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/patología , Resistencia a Antineoplásicos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Microambiente Tumoral
4.
Front Immunol ; 12: 635622, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33968028

RESUMEN

Introduction: Schistosomiasis is a neglected tropical disease (NTD) caused by blood-dwelling flatworms which develop from skin-penetrating cercariae, the freely swimming water-borne infective stage of Schistosoma mansoni, into adult worms. This natural course of infection can be mimicked in experimental mouse models of schistosomiasis. However, only a maximum of 20-30% of penetrated cercariae mature into fecund adults. The reasons for this are unknown but could potentially involve soluble factors of the innate immune system, such as complement factors and preexisting, natural antibodies. Materials and Methods: Using our recently developed novel serum- and cell-free in vitro culture system for newly transformed schistosomula (NTS), which supports long-term larval survival, we investigated the effects of mouse serum and its major soluble complement factors C1q, C3, C4 as well as preexisting, natural IgM in vitro and assessed worm development in vivo by infecting complement and soluble (s)IgM-deficient animals. Results: In contrast to sera from humans and a broad variety of mammalian species, serum from mice, surprisingly, killed parasites already at skin stage in vitro. Interestingly, the most efficient killing component(s) were heat-labile but did not include important members of the perhaps best known family of heat-labile serum factors, the complement system, nor consisted of complement-activating natural immunoglobulins. Infection of complement C1q and sIgM-deficient mice with S. mansoni as well as in vitro tests with sera from mice deficient in C3 and C4 revealed no major role for these soluble factors in vivo in regard to parasite maturation, fecundity and associated immunopathology. Rather, the reduction of parasite maturation from cercariae to adult worms was comparable to wild-type mice. Conclusion: This study reveals that not yet identified heat-labile serum factors are major selective determinants of the host-specificity of schistosomiasis, by directly controlling schistosomal development and survival.


Asunto(s)
Proteínas del Sistema Complemento/metabolismo , Inmunoglobulina M/sangre , Schistosoma mansoni/crecimiento & desarrollo , Esquistosomiasis mansoni/sangre , Esquistosomiasis mansoni/parasitología , Animales , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Complemento C4/genética , Complemento C4/metabolismo , Proteínas del Sistema Complemento/genética , Modelos Animales de Enfermedad , Femenino , Interacciones Huésped-Parásitos , Humanos , Macaca mulatta , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Schistosoma mansoni/inmunología , Esquistosomiasis mansoni/inmunología , Especificidad de la Especie
5.
Cancer Cell ; 39(6): 866-882.e11, 2021 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-33930309

RESUMEN

Cancer-associated fibroblasts (CAF) are a poorly characterized cell population in the context of liver cancer. Our study investigates CAF functions in intrahepatic cholangiocarcinoma (ICC), a highly desmoplastic liver tumor. Genetic tracing, single-cell RNA sequencing, and ligand-receptor analyses uncovered hepatic stellate cells (HSC) as the main source of CAF and HSC-derived CAF as the dominant population interacting with tumor cells. In mice, CAF promotes ICC progression, as revealed by HSC-selective CAF depletion. In patients, a high panCAF signature is associated with decreased survival and increased recurrence. Single-cell RNA sequencing segregates CAF into inflammatory and growth factor-enriched (iCAF) and myofibroblastic (myCAF) subpopulations, displaying distinct ligand-receptor interactions. myCAF-expressed hyaluronan synthase 2, but not type I collagen, promotes ICC. iCAF-expressed hepatocyte growth factor enhances ICC growth via tumor-expressed MET, thus directly linking CAF to tumor cells. In summary, our data demonstrate promotion of desmoplastic ICC growth by therapeutically targetable CAF subtype-specific mediators, but not by type I collagen.


Asunto(s)
Neoplasias de los Conductos Biliares/patología , Fibroblastos Asociados al Cáncer/patología , Colangiocarcinoma/patología , Anciano , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/patología , Fibroblastos Asociados al Cáncer/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colágeno Tipo I/metabolismo , Femenino , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/patología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Hialuronano Sintasas/genética , Hialuronano Sintasas/metabolismo , Ácido Hialurónico/metabolismo , Masculino , Ratones Transgénicos , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-met/metabolismo , Microambiente Tumoral
6.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33905375

RESUMEN

Cancer-associated fibroblasts (CAF) may exert tumor-promoting and tumor-suppressive functions, but the mechanisms underlying these opposing effects remain elusive. Here, we sought to understand these potentially opposing functions by interrogating functional relationships among CAF subtypes, their mediators, desmoplasia, and tumor growth in a wide range of tumor types metastasizing to the liver, the most common organ site for metastasis. Depletion of hepatic stellate cells (HSC), which represented the main source of CAF in mice and patients in our study, or depletion of all CAF decreased tumor growth and mortality in desmoplastic colorectal and pancreatic metastasis but not in nondesmoplastic metastatic tumors. Single-cell RNA-Seq in conjunction with CellPhoneDB ligand-receptor analysis, as well as studies in immune cell-depleted and HSC-selective knockout mice, uncovered direct CAF-tumor interactions as a tumor-promoting mechanism, mediated by myofibroblastic CAF-secreted (myCAF-secreted) hyaluronan and inflammatory CAF-secreted (iCAF-secreted) HGF. These effects were opposed by myCAF-expressed type I collagen, which suppressed tumor growth by mechanically restraining tumor spread, overriding its own stiffness-induced mechanosignals. In summary, mechanical restriction by type I collagen opposes the overall tumor-promoting effects of CAF, thus providing a mechanistic explanation for their dual functions in cancer. Therapeutic targeting of tumor-promoting CAF mediators while preserving type I collagen may convert CAF from tumor promoting to tumor restricting.


Asunto(s)
Fibroblastos Asociados al Cáncer/metabolismo , Colágeno Tipo I/metabolismo , Células Estrelladas Hepáticas/metabolismo , Neoplasias Hepáticas Experimentales/metabolismo , Mecanotransducción Celular , Animales , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Colágeno Tipo I/genética , Células Estrelladas Hepáticas/patología , Humanos , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones Noqueados , Metástasis de la Neoplasia
7.
J Allergy Clin Immunol ; 148(3): 843-857.e6, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33684437

RESUMEN

BACKGROUND: Prenatal exposure to infections can modify immune development. These environmental disturbances during early life potentially alter the incidence of inflammatory disorders as well as priming of immune responses. Infection with the helminth Schistosoma mansoni is widely studied for its ability to alter immune responsiveness and is associated with variations in coinfection, allergy, and vaccine efficacy in endemic populations. OBJECTIVE: Exposure to maternal schistosomiasis during early life, even without transmission of infection, can result in priming effects on offspring immune responses to bystander antigenic challenges as related to allergic responsiveness and vaccination, with this article seeking to further clarify the effects and underlying immunologic imprinting. METHODS: Here, we have combined a model of chronic maternal schistosomiasis infection with a thorough analysis of subsequent offspring immune responses to allergy and vaccination models, including viral challenge and steady-state changes to immune cell compartments. RESULTS: We have demonstrated that maternal schistosomiasis alters CD4+ responses during allergic sensitization and challenge in a skewed IL-4/B-cell-dominant response to antigenic challenge associated with limited inflammatory response. Beyond that, we have uncovered previously unidentified alterations to CD8+ T-cell responses during immunization that are dependent on vaccine formulation and have functional impact on the efficacy of vaccination against viral infection in a murine hepatitis B virus model. CONCLUSION: In addition to steady-state modifications to CD4+ T-cell polarization and B-cell priming, we have traced these modified CD8+ responses to an altered dendritic cell phenotype sustained into adulthood, providing evidence for complex priming effects imparted by infection via fetomaternal cross talk.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal/inmunología , Hipersensibilidad Respiratoria/inmunología , Esquistosomiasis/inmunología , Alérgenos/inmunología , Animales , Linfocitos B/inmunología , Células Cultivadas , Células Dendríticas/inmunología , Femenino , Feto/inmunología , Perfilación de la Expresión Génica , Inmunización , Pulmón/inmunología , Ganglios Linfáticos/inmunología , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina/inmunología , Embarazo , Hipersensibilidad Respiratoria/genética , Schistosoma mansoni , Bazo/inmunología , Linfocitos T/inmunología
8.
J Infect Dis ; 221(9): 1448-1461, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31875228

RESUMEN

BACKGROUND: Chronic hepatitis B develops more frequently in countries with high prevalence of helminth infections. The crosstalk between these 2 major liver-residing pathogens, Schistosoma mansoni and hepatitis B virus (HBV), is barely understood. METHODS: We used state-of-the-art models for both acute and chronic HBV infection to study the pathogen-crosstalk during the different immune phases of schistosome infection. RESULTS: Although liver pathology caused by schistosome infection was not affected by either acute or chronic HBV infection, S mansoni infection influenced HBV infection outcomes in a phase-dependent manner. Interferon (IFN)-γ secreting, HBV- and schistosome-specific CD8 T cells acted in synergy to reduce HBV-induced pathology during the TH1 phase and chronic phase of schistosomiasis. Consequently, HBV was completely rescued in IFN-γ-deficient or in TH2 phase coinfected mice demonstrating the key role of this cytokine. It is interesting to note that secondary helminth infection on the basis of persistent (chronic) HBV infection increased HBV-specific T-cell frequency and resulted in suppression of virus replication but failed to fully restore T-cell function and eliminate HBV. CONCLUSIONS: Thus, schistosome-induced IFN-γ had a prominent antiviral effect that outcompeted immunosuppressive effects of TH2 cytokines, whereas HBV coinfection did not alter schistosome pathogenicity.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/inmunología , Esquistosomiasis mansoni/complicaciones , Esquistosomiasis mansoni/inmunología , Animales , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Virus de la Hepatitis B/fisiología , Interferón gamma/inmunología , Hígado/parasitología , Hígado/patología , Hígado/virología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Recuento de Huevos de Parásitos , Schistosoma mansoni , Células Th2/inmunología , Replicación Viral
9.
Cell Rep ; 28(1): 231-244.e5, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31269443

RESUMEN

Helicobacter pylori chronically colonizes the stomach and is strongly associated with gastric cancer. Its concomitant occurrence with helminths such as schistosomes has been linked to reduced cancer incidence, presumably due to suppression of H. pylori-associated pro-inflammatory responses. However, experimental evidence in support of such a causal link or the mutual interaction of both pathogens is lacking. We investigated the effects of co-infection during the different immune phases of S. mansoni infection. Surprisingly, co-infected mice had increased H. pylori gastric colonization during the interferon gamma (IFNγ) phase of schistosome infection but reduced infiltration of T cells in the stomach due to misdirection of antigen-experienced CXCR3+ T cells to the liver. Unexpectedly, H. pylori co-infection resulted in partial protection from schistosome-induced liver damage. Here, we demonstrate that an increase in fibrosis-protective IL-13Ra2 is associated with H. pylori infection. Thus, our study strongly points to an immunological interaction of anatomically isolated pathogens, eventually resulting in altered disease pathology.


Asunto(s)
Coinfección/inmunología , Gastritis/microbiología , Infecciones por Helicobacter/inmunología , Helicobacter pylori , Cirrosis Hepática/microbiología , Cirrosis Hepática/parasitología , Esquistosomiasis mansoni/inmunología , Animales , Antígenos/inmunología , Células de la Médula Ósea/metabolismo , Coinfección/microbiología , Coinfección/parasitología , Citocinas/metabolismo , Células Dendríticas/citología , Células Dendríticas/metabolismo , Femenino , Gastritis/inmunología , Gastritis/metabolismo , Gastritis/parasitología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Humanos , Interferón gamma/metabolismo , Hígado/metabolismo , Hígado/microbiología , Hígado/parasitología , Hígado/patología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Ratones , Ratones Endogámicos C57BL , Esquistosomiasis mansoni/metabolismo , Esquistosomiasis mansoni/patología , Estómago/inmunología , Estómago/microbiología , Estómago/parasitología , Estómago/patología , Células TH1/inmunología , Células Th2/inmunología
10.
Eur J Immunol ; 47(5): 841-847, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28271497

RESUMEN

Schistosomiasis is a nontransplacental helminth infection. Chronic infection during pregnancy suppresses allergic airway responses in offspring. We addressed the question whether in utero exposure to chronic schistosome infection (Reg phase) in mice affects B-cell and T-cell development. Therefore, we focused our analyses on T-cell differentiation capacity induced by epigenetic changes in promoter regions of signature cytokines in offspring. Here, we show that naïve T cells from offspring of schistosome infected female mice had a strong capacity to differentiate into TH 1 cells, whereas TH 2 differentiation was impaired. In accordance, reduced levels of histone acetylation of the IL-4 promoter regions were observed in naïve T cells. To conclude, our mouse model revealed distinct epigenetic changes within the naïve T-cell compartment affecting TH 2 and TH 1 cell differentiation in offspring of mothers with chronic helminth infection. These findings could eventually help understand how helminths alter T-cell driven immune responses induced by allergens, bacterial or viral infections, as well as vaccines.


Asunto(s)
Diferenciación Celular , Epigénesis Genética , Activación de Linfocitos , Complicaciones Parasitarias del Embarazo/inmunología , Esquistosomiasis/inmunología , Linfocitos T/fisiología , Acetilación , Animales , Enfermedad Crónica , Citocinas/genética , Citocinas/inmunología , Femenino , Histonas/metabolismo , Interleucina-4/genética , Interleucina-4/inmunología , Ratones , Madres , Embarazo , Regiones Promotoras Genéticas , Esquistosomiasis/parasitología , Linfocitos T/inmunología , Células TH1/inmunología , Células TH1/fisiología , Células Th2/inmunología , Células Th2/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...