Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Planta ; 258(5): 90, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37775539

RESUMEN

MAIN CONCLUSION: Plant phytotoxin synthesis is influenced by intricate signaling networks like jasmonic acid (JA) and salicylic acid (SA). These compounds not only induce allelochemical production but also aid weed suppression and plant immunity. (-)-Loliolide, JA, SA, and their derivatives trigger rice allelochemical synthesis and gene expression. Enhancing allelochemical synthesis in crops offers an alternative, reducing reliance on traditional herbicides for effective weed management. Rice (Oryza sativa L.) serves as a crucial staple food crop, nourishing over half of the global population, particularly in South Asia. Within rice plants, various secondary metabolites are produced, contributing to its nutritional value and providing energy to consumers. Over the last 5 decades, researchers have investigated 276 distinct types of secondary metabolites found in rice plants. These metabolites predominantly include phenolic acids, flavonoids, steroids, alkaloids, terpenoids, and their derivatives. The role of these secondary metabolites is to regulate the growth and development of the rice plant. In this research paper, we have focused on the allelopathic potential of rice, which involves its active defense strategy to suppress other species in its vicinity. This defense mechanism is regulated by plant signaling compounds. These signaling compounds enable rice plants to recognize and detect competitors, pathogens, and herbivores in their environment. As a response, the rice plants elevate the production of defensive secondary metabolites. One crucial aspect of rice allelopathy is the phenomenon of neighbor detection. Rice plants can sense the presence of neighboring plants and respond accordingly to establish their competitive advantage and ensure their survival. This paper specifically highlights the impact of exogenously applied signaling compounds, namely Methyl salicylate (MeSA) and Methyl Jasmonate (MeJA), on paddy rice. The aim is to provide deeper insights into the signaling mechanisms involved in rice allelopathy and how the exogenous application of signaling compounds influence the induction and regulation of defensive secondary metabolites in rice plants. Comprehensive analysis of various researchers' studies clearly reveals that the application of these elicitor compounds noticeably augments the allelopathic potential of rice, resulting in heightened accumulation of phenolic acid compounds. Expansion in more enlistment of phenolics may be because of expansion in the activities of enzymes, such as cinnamate 4-hydroxylase (C4H) and phenylalanine ammonia-lyase (PAL), the two main enzymes of the phenylpropanoid pathway, which are associated with allelopathic crop plants, and along this, they recognize the presence of weeds and react by expanding allelochemical focuses. Consequently, substantial endeavors have been dedicated in recent times to discover and characterize plant-derived signaling molecules. In bioassays conducted by Patni et al. in 2019, both competitive and non-competitive rice genotypes exhibited elevated phytotoxicity against Echino colona following treatment with MeSA. MeSA-treated rice plants displayed accelerated growth, increased yield, and concurrently demonstrated weed-suppressing properties. Published studies from 1976 to 2021 are reviewed in this paper. The study indicates that signaling compounds induce allelochemical concentrations, enhancing allelopathic activity. This insight may lead to development of novel herbicides for effective sustainable weed management.


Asunto(s)
Herbicidas , Oryza , Oryza/genética , Feromonas/metabolismo , Agricultura , Productos Agrícolas/metabolismo , Herbicidas/farmacología , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo
2.
J Pers Med ; 12(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35330393

RESUMEN

Lung cancer is one of the most invasive cancers affecting over a million of the population. Non-small cell lung cancer (NSCLC) constitutes up to 85% of all lung cancer cases, and therefore, it is essential to identify predictive biomarkers of NSCLC for therapeutic purposes. Here we use a network theoretical approach to investigate the complex behavior of the NSCLC gene-regulatory interactions. We have used eight NSCLC microarray datasets GSE19188, GSE118370, GSE10072, GSE101929, GSE7670, GSE33532, GSE31547, and GSE31210 and meta-analyzed them to find differentially expressed genes (DEGs) and further constructed a protein-protein interaction (PPI) network. We analyzed its topological properties and identified significant modules of the PPI network using cytoscape network analyzer and MCODE plug-in. From the PPI network, top ten genes of each of the six topological properties like closeness centrality, maximal clique centrality (MCC), Maximum Neighborhood Component (MNC), radiality, EPC (Edge Percolated Component) and bottleneck were considered for key regulator identification. We further compared them with top ten hub genes (those with the highest degrees) to find key regulator (KR) genes. We found that two genes, CDK1 and HSP90AA1, were common in the analysis suggesting a significant regulatory role of CDK1 and HSP90AA1 in non-small cell lung cancer. Our study using a network theoretical approach, as a summary, suggests CDK1 and HSP90AA1 as key regulator genes in complex NSCLC network.

3.
Stoch Environ Res Risk Assess ; 36(10): 3239-3253, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35282330

RESUMEN

COVID-19 or Coronavirus (SARS-COV-2) is a pandemic calamity that has locked people in their own houses. The effect of SARS-COV-2 disease has caused a decrease in the economy as businesses, transportation, aviation, and industries have been halted. Many people have died, and many are trying to survive this pandemic. As we all know, the virus of SARS-COV-2 can be transmitted through physical contact, and the government has taken up specific measures like closing up schools and colleges, closing up malls/markets/public places, and imposing lockdown in cities. It is expected that these measures can result in a decreased infection rate. On the one hand, SARS-COV-2 Has halted economic or developmental growth, but on the other hand, our nature i. e. our earth, is being provided with such conditions that it can restore its losses. Air quality has been improved in the lock down time. The emission level of different gases and particulate matters have slowed down in the Covid period. Water bodies have been clean and more transparent and propagate wildlife and fisheries. Due to the SARS-COV-2 lockdown, businesses and industries have halted, impacting the financial needs of many people around the world. The worry about surviving this pandemic and the financial crisis leads them to mental and emotional distress. This review article summarized the emergence of SARS-COV-2 disease and its role on human physical and psychological health. We also described the positive and negative effects of SARS-COV-2 on climate, environmental, and air quality with upcoming challenges for governments and populations around the world.

4.
Environ Sci Pollut Res Int ; 29(4): 4865-4879, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34791631

RESUMEN

Mangroves are one of the most productive ecosystems in the world harboring huge biological diversity. The prime ecological roles of mangroves are prevention of coastal erosion and shoreline protection. Mangroves face varying degrees of threats due to overexploitation, conversion of mangrove habitats for agriculture, settlement and industrial purposes, illegal encroachment, global warming, sea-level rise, El Nino, and pollution. Among them, microplastic (MP) pollution is a major concern threatening not only the mangroves per se but also the rich biodiversity that it shelters. In general, the microbial communities which are paramount to nutrient recycling and ecological dynamics undergo substantial changes upon MP exposure. If the MP pollution in the mangrove habitats continues unabated in the coming decades, there may be serious consequences on the already threatened mangrove ecosystems and the coastal communities. This review article attempts to consolidate MP pollution of mangrove wetlands, its impact on mangroves and associated microbiota, and the microbial solution for its remediation as a sustainable strategy.


Asunto(s)
Microbiota , Humedales , Ecosistema , Contaminación Ambiental , Microplásticos , Plásticos
5.
Asian J Pharm Sci ; 16(5): 533-550, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34849161

RESUMEN

Long non coding RNAs (lncRNAs) are non-protein or low-protein coding transcripts that contain more than 200 nucleotides. They representing a large share of the cell's transcriptional output, demonstrate functional attributes viz. tissue-specific expression, determination of cell fate, controlled expression, RNA processing and editing, dosage compensation, genomic imprinting, conserved evolutionary traits etc. These long non coding variants are well associated with pathogenicity of various diseases including the neurological disorders like Alzheimer's disease, schizophrenia, Huntington's disease, Parkinson's disease etc. Neurological disorders are widespread and there knowing the underlying mechanisms become crucial. The lncRNAs take part in the pathogenesis by a plethora of mechanisms like decoy, scaffold, mi-RNA sequestrator, histone modifiers and in transcriptional interference. Detailed knowledge of the role of lncRNAs can help to use them further as novel biomarkers for therapeutic aspects. Here, in this review we discuss regulation and functional roles of lncRNAs in eight neurological diseases and psychiatric disorders, and the mechanisms by which they act. With these, we try to establish their roles as potential markers and viable diagnostic tools in these disorders.

6.
Heliyon ; 7(8): e07709, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34430728

RESUMEN

Plant secondary metabolites (PSMs) are plant products that are discontinuously distributed throughout the plant kingdom. These secondary compounds have various chemical groups and are named according to their chemical constituents. For their ability to defend biotic and abiotic stresses they are considered as plants' defensive compounds. These metabolites take part in plant protection from insects, herbivores, and extreme environmental conditions. They are indirectly involved in plants' growth and development. Secondary metabolites are also used by people in the form of medicines, pharmaceuticals, agrochemicals, colors, fragrances, flavorings, food additives, biopesticides, and drugs development. However, the increase in atmospheric temperature by several anthropogenic activities majorly by the combustion of hydrocarbons is a great issue now. On the other hand, climate change leaves an impact on the quality and quantity of plant secondary metabolites. It is measured that several greenhouse gases (GHGs) are present in the atmosphere, like Chlorofluorocarbons (CFCs), nitrous oxides (NOx), Carbon dioxide (CO2), Methane (CH4) and Ozone (O3), etc. CO2, the major greenhouse gas is essential for photosynthesis. On the other hand, CO2 plays a significant role in the up-regulation of atmospheric temperature. Plants produce various types of primary metabolites such as carbohydrates, proteins, fats, membrane lipids, nucleic acids, and chlorophyll as well as a variety of secondary metabolites from photosynthesis. The high temperature in the atmosphere creates heat stress for plants. As a matter of fact many morphological, physiological and biochemical changes occur in the plant. The high temperature invariably elicits the production of several secondary metabolites within plants. Various strategies have been universally documented to improve the production of PSMs. With this objective, the focus of the current review is to further investigate and discuss futuristic scenarios the effect of elevated CO2 and high temperature on PSMs production which may perhaps beneficial for pharmaceutical industries, biotechnology industries, and also in climate change researches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...