Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Dalton Trans ; 50(36): 12440-12447, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34397061

RESUMEN

Cobalt hydrides are known to mediate a number of important chemical transformations including proton (H+), hydride (H-), and hydrogen-atom (H˙) transfer. Central to the tunability of such frameworks is judicious ligand design, which offers the flexibility to alter fundamental properties relevant to reactivity. Herein, we report the preparation of one such cobalt(III) hydride: [Cp*CoIII(P2BCy4)(H)]BPh4 (Cp* = C5Me5-, P2BCy4 = 1,2-bis(di(3-dicyclohexylborane)propylphosphino)ethane) that is encircled by a boron-based Lewis-acidic secondary coordination sphere. The structure of this species is supported by synchrotron-radiation crystallography, evidencing a terminal Co(III) hydride with four sp2-hybridized boranes that invite Lewis base coordination. To this end, electrochemical reactivity studies performed using [Cp*CoIII(P2BCy4)Cl]+ or an "all-akyl" model, [Cp*CoIII(dnppe)Cl]+ (dnppe = 1,2-bis(di-n-propylphosphino)ethane) with benzoic or 4-pyridylbenzoic acid show divergent responses for protonation of electrochemically-generated Co(I) to give a Co(III) hydride. For [Cp*CoIII(P2BCy4)Cl]+, this process is complex, not only involving protonation, but also engagement of the pendant borane moieties in Lewis acid/base interactions. For protonation by benzoic acid, for example, borane-benzoate contacts are substantiated by variable temperature NMR spectroscopic measurements and theoretical calculations, pointing to a cooperative Co-H/B-O bond forming process. These data are discussed in the context of designing new molecular catalysts for ligand-assisted hydrogen evolution reactivity.

3.
J Am Chem Soc ; 143(10): 3687-3692, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33651600

RESUMEN

Herein we report the synthesis and characterization of anionic boron- and carbon-based Kekulé diradicaloids spanned by a p-phenylene bridge. In contrast to Thiele's hydrocarbon, a closed-shell singlet system, they show an appreciable population of the triplet state at room temperature, as evidenced by both NMR and EPR spectroscopy. Moreover, en route to these anionic boron- and carbon-based hetero-diradicaloids, the formation of an isolable diamino(4-diarylboryl-phenyl)methyl radical was observed.

4.
Inorg Chem ; 60(1): 37-41, 2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33355442

RESUMEN

Ligand design represents a central tenet of synthetic chemistry, wherein simple modification can lead to major differences in reactivity. Herein, we describe the preparation of two bis(diphosphino)nickel(II) hydride complexes that contain eight pendant boranes in their secondary coordination sphere, [Ni(H)(P2BR4)2]+ (R = Cy or Mes; Mes = 2,4,6-trimethylphenyl). Divergent reactivity of the cyclohexyl analogue toward the [NAD]+ model, 3-acetyl-N-benzylpyridinium bromide ([BNAcP]Br), is underscored. While [Ni(H)(P2BCy4)2]+ undergoes rapid hydride transfer, the related species [Ni(H)(dnppe)2]+ [dnppe = 1,2-bis(di-n-propylphosphino)ethane] and adduct [Ni(H)(P2BCy4)2(DMAP)8]+ (DMAP = 4-N,N-dimethylaminopyridine) exhibit no such reactivity. This borane-appended nickel(II) hydride distinguishes itself from its "all-alkyl" cousins and provides future opportunities for the design of [Ni(H)(diphosphine)2]+ reagents for hydride transfer.

5.
Dalton Trans ; 45(27): 10999-1007, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27309843

RESUMEN

The syntheses and structural characterization of hypo-electronic di-molybdenum triple-decker sandwich clusters are reported. Thermolysis of [Ru3(CO)12] with an in situ generated intermediate obtained from the reaction of [Cp*MoCl4] with [LiBH4·THF] yielded an electron deficient triple-decker sandwich complex, [(Cp*Mo)2{µ-η(6):η(6)-B4H4Ru2(CO)6}], . In an effort to generate analogous triple-deckers containing group-16 elements, we isolated [(Cp*Mo)2{µ-η(6):η(6)-B4H4ERu(CO)3}] (: E = Te; : E = S; : E = Se). These clusters show a high metal coordination number and cross cluster Mo-Mo bond. The formal cluster electron count of these compounds is four or three skeletal electron pairs less than required for a canonical closo-structure of the same nuclearity. Therefore, these compounds represent a novel class of triple-decker sandwich complex with 22 or 24 valence-electrons (VE), wherein the "chair" like hexagonal middle ring is composed of B, Ru and chalcogen. One of the key differences among the synthesized triple-decker molecules is the puckering nature of the middle ring [B4RuE], which increases in the order S < Se < Ru(CO)3 < Te. In addition, Fenske-Hall and quantum-chemical calculations with DFT methods at the BP86 level of theory have been used to analyze the bonding of these novel complexes. The studies not only explain the electron unsaturation of the molecules, but also reveal the reason for the significant puckering of the middle deck. All the compounds have been characterized by IR, (1)H, (11)B, and (13)C NMR spectroscopy in solution and the solid state structures were established by crystallographic analysis.

6.
Chemistry ; 22(26): 8889-96, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27218603

RESUMEN

Trinuclear complexes of group 6, 8, and 9 transition metals with a (µ3 -BH) ligand [(µ3 -BH)(Cp*Rh)2 (µ-CO)M'(CO)5 ], 3 and 4 (3: M'=Mo; 4: M'=W) and 5-8, [(Cp*Ru)3 (µ3 -CO)2 (µ3 -BH)(µ3 -E)(µ-H){M'(CO)3 }] (5: M'=Cr, E=CO; 6: M'=Mo, E=CO; 7: M'=Mo, E=BH; 8: M'=W, E=CO), have been synthesized from the reaction between nido-[(Cp*M)2 B3 H7 ] (nido-1: M=Rh; nido-2: M=RuH, Cp*=η(5) -C5 Me5 ) and [M'(CO)5 ⋅thf] (M'=Mo and W). Compounds 3 and 4 are isoelectronic and isostructural with [(µ3 -BH)(Cp*Co)2 (µ-CO)M'(CO)5 ], (M'=Cr, Mo and W) and [(µ3 -BH)(Cp*Co)2 (µ-CO)(µ-H)2 M''H(CO)3 ], (M''=Mn and Re). All compounds are composed of a bridging borylene ligand (B-H) that is effectively stabilized by a trinuclear framework. In contrast, the reaction of nido-1 with [Cr(CO)5 ⋅thf] gave [(Cp*Rh)2 Cr(CO)3 (µ-CO)(µ3 -BH)(B2 H4 )] (9). The geometry of 9 can be viewed as a condensed polyhedron composed of [Rh2 Cr(µ3 -BH)] and [Rh2 CrB2 ], a tetrahedral and a square pyramidal geometry, respectively. The bonding of 9 can be considered by using the polyhedral fusion formalism of Mingos. All compounds have been characterized by using different spectroscopic studies and the molecular structures were determined by using single-crystal X-ray diffraction analysis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...