Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Crohns Colitis ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38572716

RESUMEN

BACKGROUND: Fecal microbiota transplantation (FMT) shows some efficacy in treating patients with ulcerative colitis (UC), although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS: Patients ≥ 18 years old with mild to moderate active UC were randomly assigned to three weeks budesonide (9 mg) or placebo followed by four weekly infusions of a donor feces suspension. Two donors were selected based on microbiota composition, Treg induction and SCFA production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS: In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment (p=0.56) nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 (42%) of patients achieved (partial) remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response (80% of responders, p<0.05) but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION: In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in ulcerative colitis.

2.
Gut Microbes ; 16(1): 2333748, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38555499

RESUMEN

Antibiotic resistance is a global threat driven primarily by antibiotic use. We evaluated the effects of antibiotic exposures on the gut microbiomes and resistomes of children at high risk of colonization by antibiotic-resistant bacteria. We performed shotgun metagenomic sequencing of 691 serially collected fecal samples from 80 children (<18 years) undergoing hematopoietic cell transplantation. We evaluated the effects of aerobic (cefepime, vancomycin, fluoroquinolones, aminoglycosides, macrolides, and trimethoprim-sulfamethoxazole) and anaerobic (piperacillin-tazobactam, carbapenems, metronidazole, and clindamycin) antibiotic exposures on the diversity and composition of the gut microbiome and resistome. We identified 372 unique antibiotic resistance genes (ARGs); the most frequent ARGs identified encode resistance to tetracyclines (n = 88), beta-lactams (n = 84), and fluoroquinolones (n = 79). Both aerobic and anaerobic antibiotic exposures were associated with a decrease in the number of bacterial species (aerobic, ß = 0.71, 95% CI: 0.64, 0.79; anaerobic, ß = 0.66, 95% CI: 0.53, 0.82) and the number of unique ARGs (aerobic, ß = 0.81, 95% CI: 0.74, 0.90; anaerobic, ß = 0.73, 95% CI: 0.61, 0.88) within the gut metagenome. However, only antibiotic regimens that included anaerobic activity were associated with an increase in acquisition of new ARGs (anaerobic, ß = 1.50; 95% CI: 1.12, 2.01) and an increase in the relative abundance of ARGs in the gut resistome (anaerobic, ß = 1.62; 95% CI: 1.15, 2.27). Specific antibiotic exposures were associated with distinct changes in the number and abundance of ARGs for individual antibiotic classes. Our findings detail the impact of antibiotics on the gut microbiome and resistome and demonstrate that anaerobic antibiotics are particularly likely to promote acquisition and expansion of antibiotic-resistant bacteria.


Asunto(s)
Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas , Niño , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Fluoroquinolonas/farmacología , Microbioma Gastrointestinal/genética
3.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352546

RESUMEN

Metabolic byproducts of the intestinal microbiota are crucial in maintaining host immune tone and shaping inter-species ecological dynamics. Among these metabolites, succinate is a driver of tuft cell (TC) differentiation and consequent type 2 immunity-dependent protection against invading parasites in the small intestine. Succinate is also a growth enhancer of the nosocomial pathogen Clostridioides difficile in the large intestine. To date, no research has shown the role of succinate in modulating TC dynamics in the large intestine, or the relevance of this immune pathway to C. difficile pathophysiology. Here we reveal the existence of a three-way circuit between commensal microbes, C. difficile and host epithelial cells which centers around succinate. Through selective microbiota depletion experiments we demonstrate higher levels of type 2 cytokines leading to expansion of TCs in the colon. We then demonstrate the causal role of the microbiome in modulating colonic TC abundance and subsequent type 2 cytokine induction using rational supplementation experiments with fecal transplants and microbial consortia of succinate-producing bacteria. We show that administration of a succinate-deficient Bacteroides thetaiotaomicron knockout (Δfrd) significantly reduces the enhanced type 2 immunity in mono-colonized mice. Finally, we demonstrate that mice prophylactically administered with the consortium of succinate-producing bacteria show reduced C. difficile-induced morbidity and mortality compared to mice administered with heat-killed bacteria or the vehicle. This effect is reduced in a partial tuft cell knockout mouse, Pou2f3+/-, and nullified in the tuft cell knockout mouse, Pou2f3-/-, confirming that the observed protection occurs via the TC pathway. Succinate is an intermediary metabolite of the production of short-chain fatty acids, and its concentration often increases during dysbiosis. The first barrier to enteric pathogens alike is the intestinal epithelial barrier, and host maintenance and strengthening of barrier integrity is vital to homeostasis. Considering our data, we propose that activation of TC by the microbiota-produced succinate in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by intestinal pathogens.

4.
Sci Transl Med ; 16(730): eadi9711, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38232140

RESUMEN

Despite their therapeutic benefits, antibiotics exert collateral damage on the microbiome and promote antimicrobial resistance. However, the mechanisms governing microbiome recovery from antibiotics are poorly understood. Treatment of Mycobacterium tuberculosis, the world's most common infection, represents the longest antimicrobial exposure in humans. Here, we investigate gut microbiome dynamics over 20 months of multidrug-resistant tuberculosis (TB) and 6 months of drug-sensitive TB treatment in humans. We find that gut microbiome dynamics and TB clearance are shared predictive cofactors of the resolution of TB-driven inflammation. The initial severe taxonomic and functional microbiome disruption, pathobiont domination, and enhancement of antibiotic resistance that initially accompanied long-term antibiotics were countered by later recovery of commensals. This resilience was driven by the competing evolution of antimicrobial resistance mutations in pathobionts and commensals, with commensal strains with resistance mutations reestablishing dominance. Fecal-microbiota transplantation of the antibiotic-resistant commensal microbiome in mice recapitulated resistance to further antibiotic disruption. These findings demonstrate that antimicrobial resistance mutations in commensals can have paradoxically beneficial effects by promoting microbiome resilience to antimicrobials and identify microbiome dynamics as a predictor of disease resolution in antibiotic therapy of a chronic infection.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Resiliencia Psicológica , Humanos , Animales , Ratones , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana/genética
5.
Res Sq ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37961431

RESUMEN

Persistent colonization and outgrowth of pathogenic organisms in the intestine may occur due to long-term antibiotic usage or inflammatory conditions, which perpetuate dysregulated immunity and tissue damage1,2. Gram-negative Enterobacteriaceae gut pathobionts are particularly recalcitrant to conventional antibiotic treatment3,4, though an emerging body of evidence suggests that manipulation of the commensal microbiota may be a practical alternative therapeutic strategy5-7. In this study, we rationally isolated and down-selected commensal bacterial consortia from healthy human stool samples capable of strongly and specifically suppressing intestinal Enterobacteriaceae. One of the elaborated consortia, consisting of 18 commensal strains, effectively controlled ecological niches by regulating gluconate availability, thereby reestablishing colonization resistance and alleviating antibiotic-resistant Klebsiella-driven intestinal inflammation in mice. Harnessing these microbial activities in the form of live bacterial therapeutics may represent a promising solution to combat the growing threat of proinflammatory, antimicrobial-resistant bacterial infection.

6.
mSystems ; 8(4): e0031023, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37548476

RESUMEN

SARS-CoV-2-positive patients exhibit gut and oral microbiome dysbiosis, which is associated with various aspects of COVID-19 disease (1-4). Here, we aim to identify gut and oral microbiome markers that predict COVID-19 severity in hospitalized patients, specifically severely ill patients compared to moderately ill ones. Moreover, we investigate whether hospital feeding (solid versus enteral), an important cofounder, influences the microbial composition of hospitalized COVID-19 patients. We used random forest classification machine learning models with interpretable secondary analyses. The gut, but not the oral microbiota, was a robust predictor of both COVID-19-related fatality and severity of hospitalized patients, with a higher predictive value than most clinical variables. In addition, perturbations of the gut microbiota due to enteral feeding did not associate with species that were predictive of COVID-19 severity. IMPORTANCE SARS-CoV-2 infection leads to wide-ranging, systemic symptoms with sometimes unpredictable morbidity and mortality. It is increasingly clear that the human microbiome plays an important role in how individuals respond to viral infections. Our study adds to important literature about the associations of gut microbiota and severe COVID-19 illness during the early phase of the pandemic before the availability of vaccines. Increased understanding of the interplay between microbiota and SARS-CoV-2 may lead to innovations in diagnostics, therapies, and clinical predictions.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Humanos , SARS-CoV-2 , Métodos de Alimentación , Hospitales
7.
Microbiome ; 11(1): 141, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365606

RESUMEN

BACKGROUND: Infants receive their first bacteria from their birthing parent. This newly acquired microbiome plays a pivotal role in developing a robust immune system, the cornerstone of long-term health. RESULTS: We demonstrated that the gut, vaginal, and oral microbial diversity of pregnant women with SARS-CoV-2 infection is reduced, and women with early infections exhibit a different vaginal microbiota composition at the time of delivery compared to their healthy control counterparts. Accordingly, a low relative abundance of two Streptococcus sequence variants (SV) was predictive of infants born to pregnant women with SARS-CoV-2 infection. CONCLUSIONS: Our data suggest that SARS-CoV-2 infections during pregnancy, particularly early infections, are associated with lasting changes in the microbiome of pregnant women, compromising the initial microbial seed of their infant. Our results highlight the importance of further exploring the impact of SARS-CoV-2 on the infant's microbiome-dependent immune programming. Video Abstract.


Asunto(s)
COVID-19 , Microbiota , Humanos , Lactante , Femenino , Embarazo , SARS-CoV-2 , Mujeres Embarazadas , Parto
8.
Nat Immunol ; 24(3): 531-544, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658240

RESUMEN

Immunoglobulin A (IgA) secretion by plasma cells, terminally differentiated B cells residing in the intestinal lamina propria, assures microbiome homeostasis and protects the host against enteric infections. Exposure to diet-derived and commensal-derived signals provides immune cells with organizing cues that instruct their effector function and dynamically shape intestinal immune responses at the mucosal barrier. Recent data have described metabolic and microbial inputs controlling T cell and innate lymphoid cell activation in the gut; however, whether IgA-secreting lamina propria plasma cells are tuned by local stimuli is completely unknown. Although antibody secretion is considered to be imprinted during B cell differentiation and therefore largely unaffected by environmental changes, a rapid modulation of IgA levels in response to intestinal fluctuations might be beneficial to the host. In the present study, we showed that dietary cholesterol absorption and commensal recognition by duodenal intestinal epithelial cells lead to the production of oxysterols, evolutionarily conserved lipids with immunomodulatory functions. Using conditional cholesterol 25-hydroxylase deleter mouse line we demonstrated that 7α,25-dihydroxycholesterol from epithelial cells is critical to restrain IgA secretion against commensal- and pathogen-derived antigens in the gut. Intestinal plasma cells sense oxysterols via the chemoattractant receptor GPR183 and couple their tissue positioning with IgA secretion. Our findings revealed a new mechanism linking dietary cholesterol and humoral immune responses centered around plasma cell localization for efficient mucosal protection.


Asunto(s)
Inmunidad Innata , Células Plasmáticas , Animales , Ratones , Colesterol en la Dieta , Células Epiteliales , Inmunoglobulina A , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Intestinos
9.
Gut Microbes ; 14(1): 2127633, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36175830

RESUMEN

The gastrointestinal (GI) tract is the reservoir for multidrug resistant (MDR) pathogens, specifically carbapenem-resistant (CR) Klebsiella pneumoniae and other Enterobacteriaceae, which often lead to the spread of antimicrobial resistance genes, severe extraintestinal infections, and lethal outcomes. Selective GI decolonization has been proposed as a new strategy for preventing transmission to other body sites and minimizing spreading to susceptible individuals. Here, we purify the to-date uncharacterized class IIb microcin I47 (MccI47) and demonstrate potent inhibition of numerous Enterobacteriaceae, including multidrug-resistant clinical isolates, in vitro at concentrations resembling those of commonly prescribed antibiotics. We then genetically modify the probiotic bacterium Escherichia coli Nissle 1917 (EcN) to produce MccI47 from a stable multicopy plasmid by using MccI47 toxin production in a counterselection mechanism to engineer one of the native EcN plasmids, which renders provisions for inducible expression and plasmid selection unnecessary. We then test the clinical relevance of the MccI47-producing engineered EcN in a murine CR K. pneumoniae colonization model and demonstrate significant MccI47-dependent reduction of CR K. pneumoniae abundance after seven days of daily oral live biotherapeutic administration without disruption of the resident microbiota. This study provides the first demonstration of MccI47 as a potent antimicrobial against certain Enterobacteriaceae, and its ability to significantly reduce the abundance of CR K. pneumoniae in a preclinical animal model, when delivered from an engineered live biotherapeutic product. This study serves as the foundational step toward the use of engineered live biotherapeutic products aimed at the selective removal of MDR pathogens from the GI tract.


Asunto(s)
Infecciones por Escherichia coli , Microbioma Gastrointestinal , Animales , Ratones , Antibacterianos/farmacología , Bacteriocinas , Carbapenémicos/farmacología , Enterobacteriaceae/genética , Escherichia coli/genética , Klebsiella pneumoniae/genética
10.
Cell Host Microbe ; 30(4): 583-598.e8, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35421353

RESUMEN

Manipulation of the gut microbiota via fecal microbiota transplantation (FMT) has shown clinical promise in diseases such as recurrent Clostridioides difficile infection (rCDI). However, the variable nature of this approach makes it challenging to describe the relationship between fecal strain colonization, corresponding microbiota changes, and clinical efficacy. Live biotherapeutic products (LBPs) consisting of defined consortia of clonal bacterial isolates have been proposed as an alternative therapeutic class because of their promising preclinical results and safety profile. We describe VE303, an LBP comprising 8 commensal Clostridia strains under development for rCDI, and its early clinical development in healthy volunteers (HVs). In a phase 1a/b study in HVs, VE303 is determined to be safe and well-tolerated at all doses tested. VE303 strains optimally colonize HVs if dosed over multiple days after vancomycin pretreatment. VE303 promotes the establishment of a microbiota community known to provide colonization resistance.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Microbiota , Infecciones por Clostridium/microbiología , Infecciones por Clostridium/terapia , Trasplante de Microbiota Fecal/métodos , Voluntarios Sanos , Humanos
11.
Gut Microbes ; 14(1): 2046244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35311458

RESUMEN

Diet is a modifiable, noninvasive, inexpensive behavior that is crucial in shaping the intestinal microbiome. A microbiome "imbalance" or dysbiosis in inflammatory bowel disease (IBD) is linked to inflammation. Here, we aim to define the impact of specific foods on bacterial species commonly depleted in patients with IBD to better inform dietary treatment. We performed a single-arm, pre-post intervention trial. After a baseline period, a dietary intervention with the IBD-Anti-Inflammatory Diet (IBD-AID) was initiated. We collected stool and blood samples and assessed dietary intake throughout the study. We applied advanced computational approaches to define and model complex interactions between the foods reported and the microbiome. A dense dataset comprising 553 dietary records and 340 stool samples was obtained from 22 participants. Consumption of prebiotics, probiotics, and beneficial foods correlated with increased abundance of Clostridia and Bacteroides, commonly depleted in IBD cohorts. We further show that specific foods categorized as prebiotics or adverse foods are correlated to levels of cytokines in serum (i.e., GM-CSF, IL-6, IL-8, TNF-alpha) that play a central role in IBD pathogenesis. By using robust predictive analytics, this study represents the first steps to detangle diet-microbiome and diet-immune interactions to inform personalized nutrition for patients suffering from dysbiosis-related IBD.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Dieta , Disbiosis/terapia , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Proyectos Piloto , Prebióticos
12.
Microb Cell ; 8(6): 131-142, 2021 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-34055966

RESUMEN

Cranberry consumption has numerous health benefits, with experimental reports showing its anti-inflammatory and anti-tumor properties. Importantly, microbiome research has demonstrated that the gastrointestinal bacterial community modulates host immunity, raising the question of whether the cranberry-derived effect may be related to its ability to modulate the microbiome. Only a few studies have investigated the effect of cranberry products on the microbiome to date. Especially because cranberries are rich in dietary fibers, the extent of microbiome modulation by polyphenols, particularly proanthocyanidins (PACs), remains to be shown. Since previous work has only focused on long-term effects of cranberry extracts, in this study we investigated the effect of a water-soluble, PAC-rich cranberry juice extract (CJE) on the short-term dynamics of a human-derived bacterial community in a gnotobiotic mouse model. CJE characterization revealed a high enrichment in PACs (57%), the highest ever utilized in a microbiome study. In a 37-day experiment with a ten-day CJE intervention and 14-day recovery phase, we profiled the microbiota via 16S rRNA sequencing and applied diverse time-series analytics methods to identify individual bacterial responses. We show that daily administration of CJE induces distinct dynamic patterns in bacterial abundances during and after treatment, before recovering resiliently to pre-treatment levels. Specifically, we observed an increase of Akkermansia muciniphila and Clostridium hiranonis at the expense of Bacteroides ovatus after the offset of the selection pressure imposed by the PAC-rich CJE. This demonstrates that termination of an intervention with a cranberry product can induce changes of a magnitude as high as the intervention itself.

13.
Gut Microbes ; 13(1): 1-15, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33764826

RESUMEN

Clostridioides difficile disproportionally affects the elderly living in nursing homes (NHs). Our objective was to explore the prevalence of C. difficile in NH elders, over time and to determine whether the microbiome or other clinical factors are associated with C. difficile colonization.We collected serial stool samples from NH residents. C. difficile prevalence was determined by quantitative polymerase-chain reaction detection of Toxin genes tcdA and tcdB; microbiome composition was determined by shotgun metagenomic sequencing. We used mixed-effect random forest modeling machine to determine bacterial taxa whose abundance is associated with C. difficile prevalence while controlling for clinical covariates including demographics, medications, and past medical history.We enrolled 167 NH elders who contributed 506 stool samples. Of the 123 elders providing multiple samples, 30 (24.4%) elders yielded multiple samples in which C. difficile was detected and 78 (46.7%) had at least one C. difficile positive sample. Elders with C. difficile positive samples were characterized by increased abundances of pathogenic or inflammatory-associated bacterial taxa and by lower abundances of taxa with anti-inflammatory or symbiotic properties. Proton pump inhibitor (PPI) use is associated with lower prevalence of C. difficile (Odds Ratio 0.46; 95%CI, 0.22-0.99) and the abundance of bacterial species with known beneficial effects was higher in PPI users and markedly lower in elders with high C. difficile prevalence.C. difficile is prevalent among NH elders and a dysbiotic gut microbiome associates with C. difficile colonization status. Manipulating the gut microbiome may prove to be a key strategy in the reduction of C. difficile in the NH.


Asunto(s)
Infecciones Asintomáticas/epidemiología , Clostridioides difficile/aislamiento & purificación , Infecciones por Clostridium/epidemiología , Disbiosis/microbiología , Microbioma Gastrointestinal , Casas de Salud , Anciano , Anciano de 80 o más Años , Clostridioides difficile/crecimiento & desarrollo , Infecciones por Clostridium/microbiología , Heces/microbiología , Femenino , Humanos , Masculino , Prevalencia , Inhibidores de la Bomba de Protones/uso terapéutico
14.
Nat Commun ; 12(1): 1141, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602926

RESUMEN

The composition of the gastrointestinal microbiota influences systemic immune responses, but how this affects infectious disease pathogenesis and antibiotic therapy outcome is poorly understood. This question is rarely examined in humans due to the difficulty in dissociating the immunologic effects of antibiotic-induced pathogen clearance and microbiome alteration. Here, we analyze data from two longitudinal studies of tuberculosis (TB) therapy (35 and 20 individuals) and a cross sectional study from 55 healthy controls, in which we collected fecal samples (for microbiome analysis), sputum (for determination of Mycobacterium tuberculosis (Mtb) bacterial load), and peripheral blood (for transcriptomic analysis). We decouple microbiome effects from pathogen sterilization by comparing standard TB therapy with an experimental TB treatment that did not reduce Mtb bacterial load. Random forest regression to the microbiome-transcriptome-sputum data from the two longitudinal datasets reveals that renormalization of the TB inflammatory state is associated with Mtb pathogen clearance, increased abundance of Clusters IV and XIVa Clostridia, and decreased abundance of Bacilli and Proteobacteria. We find similar associations when applying machine learning to peripheral gene expression and microbiota profiling in the independent cohort of healthy individuals. Our findings indicate that antibiotic-induced reduction in pathogen burden and changes in the microbiome are independently associated with treatment-induced changes of the inflammatory response of active TB, and the response to antibiotic therapy may be a combined effect of pathogen killing and microbiome driven immunomodulation.


Asunto(s)
Microbioma Gastrointestinal , Inflamación/microbiología , Inflamación/patología , Tuberculosis/complicaciones , Tuberculosis/microbiología , Adulto , Algoritmos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Carga Bacteriana/efectos de los fármacos , Biodiversidad , Estudios de Casos y Controles , Estudios de Cohortes , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/complicaciones , Modelos Biológicos , Reproducibilidad de los Resultados , Tuberculosis/tratamiento farmacológico , Tuberculosis/patología
15.
Biol Blood Marrow Transplant ; 26(11): 2053-2060, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32682948

RESUMEN

Certain anaerobic bacteria are important for maintenance of gut barrier integrity and immune tolerance and may influence the risk of graft-versus-host disease (GVHD) after allogeneic hematopoietic stem cell transplantation (HSCT). We conducted a single-center retrospective cohort study of allogeneic HSCT recipients to evaluate associations between receipt of antibiotics with an anaerobic spectrum of activity and GVHD outcomes. We identified 1214 children and adults who developed febrile neutropenia between 7 days before and 28 days after HSCT and compared GVHD risk and mortality among patients who received anaerobic antibiotics (piperacillin-tazobactam or carbapenems; n = 491) to patients who received only antibiotics with minimal activity against anaerobes (aztreonam, cefepime, or ceftazidime; n = 723). We performed metagenomic sequencing of serial fecal samples from 36 pediatric patients to compare the effects of specific antibiotics on the gut metagenome. Receipt of anaerobic antibiotics was associated with higher hazards of acute gut/liver GVHD (hazard ratio [HR], 1.26; 95% confidence interval [CI], 1.03 to 1.54) and acute GVHD mortality (HR, 1.63; 95% CI, 1.08 to 2.46), but not chronic GVHD diagnosis (HR, 1.04; 95% CI: .84 to 1.28) or chronic GVHD mortality (HR, .88; 95% CI, .53 to 1.45). Anaerobic antibiotics resulted in decreased gut bacterial diversity, reduced abundances of Bifidobacteriales and Clostridiales, and loss of bacterial genes encoding butyrate biosynthesis enzymes from the gut metagenome. Acute gut/liver GVHD was preceded by a sharp decline in bacterial butyrate biosynthesis genes with antibiotic treatment. Our findings demonstrate that exposure to anaerobic antibiotics is associated with increased risks of acute gut/liver GVHD and acute GVHD mortality after allogeneic HSCT. Use of piperacillin-tazobactam or carbapenems should be reserved for febrile neutropenia cases in which anaerobic or multidrug-resistant infections are suspected.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Adulto , Anaerobiosis , Antibacterianos/uso terapéutico , Niño , Enfermedad Injerto contra Huésped/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Estudios Retrospectivos , Trasplante Homólogo
16.
Gut Microbes ; 12(1): 1785246, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32730134

RESUMEN

Crohn's disease (CD) is a chronic immune-mediated inflammatory condition caused by the loss of mucosal tolerance toward the commensal microbiota. On average, 29.5% and 42.7% CD patients experience perianal complications at 10 and 20 y after diagnosis, respectively. Perianal CD (pCD) result in high disease burden, diminished quality of life, and elevated health-care costs. Overall pCD are predictors of poor long-term outcomes. Animal models of gut inflammation have failed to fully recapitulate the human manifestations of fistulizing CD. Here, we evaluated dogs with spontaneous canine anal furunculosis (CAF), a disease with clinical similarities to pCD, as a surrogate model for understanding the microbial contribution of human pCD pathophysiology. By comparing the gut microbiomes between dogs suffering from CAF (CAF dogs) and healthy dogs, we show CAF-dog microbiomes are either very dissimilar (dysbiotic) or similar (healthy-like), yet unique, to healthy dog's microbiomes. Compared to healthy or healthy-like CAF microbiomes, dysbiotic CAF microbiomes showed an increased abundance of Bacteroides vulgatus and Escherichia coli and a decreased abundance of Megamonas species and Prevotella copri. Our results mirror what have been reported in previous microbiome studies of patients with CD; particularly, CAF dogs exhibited two distinct microbiome composition: dysbiotic and healthy-like, with determinant bacterial taxa such as E. coli and P. copri that overlap what it has been found on their human counterpart. Thus, our results support the use of CAF dogs as a surrogate model to advance our understanding of microbial dynamics in pCD.


Asunto(s)
Enfermedad de Crohn/microbiología , Modelos Animales de Enfermedad , Disbiosis/microbiología , Fístula Rectal/microbiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Enfermedad de Crohn/patología , Perros , Disbiosis/patología , Femenino , Forunculosis/microbiología , Forunculosis/patología , Microbioma Gastrointestinal , Humanos , Masculino , Redes y Vías Metabólicas/genética , Fístula Rectal/patología
17.
Biol Blood Marrow Transplant ; 25(11): 2274-2280, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31326608

RESUMEN

The gastrointestinal tract is the predicted reservoir for most bloodstream infections (BSIs) after hematopoietic stem cell transplantation (HSCT). Whole-genome sequencing and comparative genomics have the potential to improve our understanding of the dynamics of gut colonization that precede BSI in HSCT recipients. Within a prospective cohort study of children (age <18 years) undergoing HSCT, 9 subjects met criteria for mucosal barrier injury BSI. We performed whole-genome sequencing of the blood culture isolate and weekly fecal samples preceding the BSI to compare the genetic similarity of BSI isolates to fecal strains. We evaluated temporal associations between antibiotic exposures and the abundances of BSI strains in the gut microbiota and correlated the detection of antibiotic resistance genes with the phenotypic antibiotic resistance of these strains. The median patient age was 2.6 years, and 78% were male. BSIs were caused by Escherichia coli (n = 5), Enterococcus faecium (n = 2), Enterobacter cloacae (n = 1), and Rothia mucilaginosa (n = 1). In the 6 BSI episodes with evaluable comparative genomics, the fecal strains were identical to the blood culture isolate (>99.99% genetic similarity). Gut domination by these strains preceded only 4 of 7 E. coli or E. faecium BSIs by a median of 17 days (range, 6 to 21 days). Increasing abundances of the resulting BSI strains in the gut microbiota were frequently associated with specific antibiotic exposures. E. cloacae and R. mucilaginosa were not highly abundant in fecal samples preceding BSIs caused by these species. The detection of antibiotic resistance genes for ß-lactam antibiotics and vancomycin predicted phenotypic resistance in BSI strains. Bacterial strains causing mucosal barrier injury BSI in pediatric HSCT recipients were observed in the gut microbiota before BSI onset, and changes in the abundances of these strains within the gut preceded most BSI episodes. However, frequent sampling of the gut microbiota and sampling of other ecological niches is likely necessary to effectively predict BSI in HSCT recipients.


Asunto(s)
Bacterias , Infecciones Bacterianas , Farmacorresistencia Bacteriana , Microbioma Gastrointestinal , Trasplante de Células Madre Hematopoyéticas , Mucosa Intestinal , Aloinjertos , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Infecciones Bacterianas/genética , Infecciones Bacterianas/microbiología , Niño , Preescolar , Femenino , Humanos , Mucosa Intestinal/lesiones , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Masculino , Estudios Prospectivos
18.
mBio ; 10(3)2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31064831

RESUMEN

The microbiota-gut-brain axis is a bidirectional communication system that is poorly understood. Alzheimer's disease (AD), the most common cause of dementia, has long been associated with bacterial infections and inflammation-causing immunosenescence. Recent studies examining the intestinal microbiota of AD patients revealed that their microbiome differs from that of subjects without dementia. In this work, we prospectively enrolled 108 nursing home elders and followed each for up to 5 months, collecting longitudinal stool samples from which we performed metagenomic sequencing and in vitro T84 intestinal epithelial cell functional assays for P-glycoprotein (P-gp) expression, a critical mediator of intestinal homeostasis. Our analysis identified clinical parameters as well as numerous microbial taxa and functional genes that act as predictors of AD dementia in comparison to elders without dementia or with other dementia types. We further demonstrate that stool samples from elders with AD can induce lower P-gp expression levels in vitro those samples from elders without dementia or with other dementia types. We also paired functional studies with machine learning approaches to identify bacterial species differentiating the microbiome of AD elders from that of elders without dementia, which in turn are accurate predictors of the loss of dysregulation of the P-gp pathway. We observed that the microbiome of AD elders shows a lower proportion and prevalence of bacteria with the potential to synthesize butyrate, as well as higher abundances of taxa that are known to cause proinflammatory states. Therefore, a potential nexus between the intestinal microbiome and AD is the modulation of intestinal homeostasis by increases in inflammatory, and decreases in anti-inflammatory, microbial metabolism.IMPORTANCE Studies of the intestinal microbiome and AD have demonstrated associations with microbiome composition at the genus level among matched cohorts. We move this body of literature forward by more deeply investigating microbiome composition via metagenomics and by comparing AD patients against those without dementia and with other dementia types. We also exploit machine learning approaches that combine both metagenomic and clinical data. Finally, our functional studies using stool samples from elders demonstrate how the c microbiome of AD elders can affect intestinal health via dysregulation of the P-glycoprotein pathway. P-glycoprotein dysregulation contributes directly to inflammatory disorders of the intestine. Since AD has been long thought to be linked to chronic bacterial infections as a possible etiology, our findings therefore fill a gap in knowledge in the field of AD research by identifying a nexus between the microbiome, loss of intestinal homeostasis, and inflammation that may underlie this neurodegenerative disorder.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Enfermedad de Alzheimer/microbiología , Disbiosis , Microbioma Gastrointestinal , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Demencia/microbiología , Células Epiteliales/metabolismo , Heces/microbiología , Femenino , Homeostasis , Humanos , Inflamación/complicaciones , Intestinos/microbiología , Aprendizaje Automático , Masculino , Redes y Vías Metabólicas/inmunología , Metagenómica , Estudios Prospectivos , ARN Ribosómico 16S/genética
19.
JCI Insight ; 3(19)2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30282828

RESUMEN

Innate immune responses that control early Mtb infection are poorly understood, but understanding these responses may inform vaccination and immunotherapy strategies. Innate T cells that respond to conserved bacterial ligands such as mucosal-associated invariant T (MAIT) and γδ T cells are prime candidates to mediate these early innate responses but have not been examined in subjects who have been recently exposed to Mtb. We recruited a cohort living in the same household with an active tuberculosis (TB) case and examined the abundance and functional phenotypes of 3 innate T cell populations reactive to M. tuberculosis: γδ T, invariant NK T (iNKT), and MAIT cells. Both MAIT and γδ T cells from subjects with Mtb exposure display ex vivo phenotypes consistent with recent activation. However, both MAIT and γδ T cell subsets have distinct response profiles, with CD4+ MAIT and γδ T cells accumulating after infection. Examination of exposed but uninfected contacts demonstrates that resistance to initial infection is accompanied by robust MAIT cell CD25 expression and granzyme B production coupled with a depressed CD69 and IFNγ response. Finally, we demonstrate that MAIT cell abundance and function correlate with the abundance of specific gut microbes, suggesting that responses to initial infection may be modulated by the intestinal microbiome.


Asunto(s)
Inmunidad Innata , Linfocitos Intraepiteliales/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Adolescente , Adulto , Niño , Estudios de Cohortes , Resistencia a la Enfermedad/inmunología , Femenino , Microbioma Gastrointestinal/inmunología , Humanos , Inmunidad Mucosa , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Mycobacterium tuberculosis/aislamiento & purificación , Mucosa Respiratoria/inmunología , Tuberculosis/microbiología , Adulto Joven
20.
Immunity ; 48(6): 1245-1257.e9, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29858010

RESUMEN

The mammalian gut microbiota provides essential metabolites to the host and promotes the differentiation and accumulation of extrathymically generated regulatory T (pTreg) cells. To explore the impact of these cells on intestinal microbial communities, we assessed the composition of the microbiota in pTreg cell-deficient and -sufficient mice. pTreg cell deficiency led to heightened type 2 immune responses triggered by microbial exposure, which disrupted the niche of border-dwelling bacteria early during colonization. Moreover, impaired pTreg cell generation led to pervasive changes in metabolite profiles, altered features of the intestinal epithelium, and reduced body weight in the presence of commensal microbes. Absence of a single species of bacteria depleted in pTreg cell-deficient animals, Mucispirillum schaedleri, partially accounted for the sequelae of pTreg cell deficiency. These observations suggest that pTreg cells modulate the metabolic function of the intestinal microbiota by restraining immune defense mechanisms that may disrupt a particular bacterial niche.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Interacciones Microbiota-Huesped/inmunología , Linfocitos T Reguladores/inmunología , Animales , Inmunidad Mucosa/inmunología , Mucosa Intestinal/inmunología , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...