Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(44): 41633-41640, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37969977

RESUMEN

Three new cationic surfactants-N-cetyl-bis(2-dimethylaminoethyl)ether bromide (CBDEB), N-dodecyl-bis(2-dimethylaminoethyl)ether bromide (DBDEB), and N-hexyl-bis(2-dimethylaminoethyl)ether bromide (HBDEB)-have been designed herein using a simple and tailorable synthesis route. CBDEB and DBDEB, the 16- and 12-carbon chain surfactants, demonstrate facile, rapid, and controllable aqueous syntheses of gold nanoparticles (AuNPs) as dual-action reducing and capping agents. The synthesis strategy, using only surfactant and HAuCl4 salt, and 4 min of heating at 80 °C, results in spherical AuNPs (average diameters of 13.4 ± 3.8 nm for CBDEB and 12.0 ± 3.8 nm for DBDEB). Microwave irradiation was also investigated as a heating method and produces AuNPs in as little as 30 s. Control over the size and shape of AuNPs was proven to be feasible (toward populations of Euclidean shapes) by appropriately tuning reaction parameters, such as the molar ratio of surfactant to Au3+, temperature, incorporation of a time delay before heating, or shape control agents, such as Cu2+. Frustratingly, the cytotoxicity of CBDEB is similar to that of cetyltrimethylammonium bromide (CTAB), a popular 16-carbon chain cationic surfactant. Notably, while the shorter HBDEB (6-carbon chain) does not produce AuNPs under the applied conditions, it does appear to improve cell viability upon cytotoxicity evaluation and may be favorable as a new biological surfactant.

2.
Talanta ; 240: 123034, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35026640

RESUMEN

We recently reported on fixed-path length laser-induced sound pinging (FPL-LISP) as a rapid photoacoustic technique employing an inexpensive benchtop tattoo-removal laser for reliably determining the speed of sound in low-volume fluids. In this contribution, we demonstrate the capacity of FPL-LISP to analyze representative commercial beverages for their natural or artificial sweetener contents. As a benchmark, the speed of sound was determined for solutions of sugars (glucose, fructose, sucrose), mock high fructose corn syrup (HFCS-55), and 12 household sweeteners (culinary sugars, syrups, honey, molasses) across the concentration range of 1-20% w/v in water, simulating the typical sweetener range found in commercial soft drinks. The setup was then employed to estimate sweetener contents of 26 popular commercial beverages using the HFCS-55 standard curve as a training data set. Our results are remarkably consistent with the label values for these representative commercial beverages, in spite of the fact that some beverages clearly employ a sweetener other than HFCS-55 or a proprietary blend, suggesting the excellent potential of the FPL-LISP setup as a quick screening tool well-suited to quality control and real-time assessment in the beverage and fermentation industrial sectors. The proposed approach represents a significant improvement over many existing methods on the basis of measurement time (down to 1 s, which can be considered real time for many applications), lenient sample requirements (tens of microliters to 1 mL), robust and user-friendly analysis, practical considerations (e.g., economical, minimal service and maintenance concerns), and prospects for advancing both online monitoring and fully portable versions of this instrumentation.


Asunto(s)
Bebidas , Edulcorantes , Bebidas/análisis , Carbohidratos de la Dieta , Fructosa , Rayos Láser , Edulcorantes/análisis
3.
J Phys Chem B ; 124(35): 7647-7658, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32790399

RESUMEN

A deep eutectic solvent (DES) entrapped in a bacterial cellulose (BC) network gives rise to a gelatin-like, self-supported material termed a bacterial cellulose eutectogel (BCEG). Although this novel material holds potential for numerous industrial, environmental, energy, or medical applications, little is known about the structural features or dynamical behavior within a eutectogel. In this work, we employ X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and small-angle neutron scattering (SANS) to probe the structural and diffusive behavior of the prevailing DES glyceline (1:2 molar ratio of choline chloride:glycerol) confined within bacterial cellulose. XRD investigations demonstrate that the bacterial cellulose maintains its crystallinity even as the glyceline content approaches 95 wt % in the BCEG, an outcome corroborated by molecular dynamics (MD) simulations, which suggest minimal changes in the structural features of the cellulose chains due to the presence of glyceline. SANS measurements reveal a significant reduction in the radius of gyration (Rg) for BC in a BCEG compared to its hydrogel analogue, indicating a collapse in the microfibrillar structure that we attribute to removal of waters from the interfibrillar space due to a higher affinity of DES for water than for cellulose. Furthermore, SANS experiments suggest that the vast majority of DES is hosted within large micropores in the BCEG (i.e., mesoscopic confinement). Interestingly, proton NMR experiments disclose faster diffusional rates for choline and glycerol entrapped in a BCEG compared to neat glyceline. MD simulations offer the possible explanation that this diffusional acceleration results from significant migration of chloride from the bulk to cellulose microfibrillar surfaces, thereby reducing hydrogen bonding with choline and glycerol partners. This study provides the first comprehensive investigation into the structure and diffusional dynamics of glyceline within a eutectogel, offering insights into mass transport that should be useful for tailoring these novel materials to potential applications.


Asunto(s)
Celulosa , Simulación de Dinámica Molecular , Difusión , Geles , Dispersión del Ángulo Pequeño
4.
Chem Commun (Camb) ; 54(54): 7523-7526, 2018 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-29926034

RESUMEN

We report a very fast (10-30 s) microwave method to prepare oleylamine-capped, monodisperse ca. 8-11 nm gold nanoparticles in an ionic liquid. A pyrrolidinium-based ionic liquid proved an excellent medium for the task whereas, despite their popularity in nanosynthesis, imidazolium ionic liquids gave no colloidally-stable gold nanoparticles in an otherwise identical reaction.

5.
Langmuir ; 33(24): 6029-6037, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28535055

RESUMEN

Two different ionic liquids comprising the tetrabutylphosphonium cation ([P4444]) paired with the strongly coordinating anions 6-aminocaproate ([6-AC]) or taurinate ([tau]) were prepared and employed in an aqueous/organic liquid bilayer system to generate nanoscale gold by Au(OH)4- photoreduction. Generally, as the concentration of ionic liquid in the organic phase was increased, the resulting quasi-spherical gold nanoparticles were smaller in size and presented less aggregation, leading to marked increases in the catalytic efficiency for 4-nitrophenol reduction using borohydride. The diffusion of the ionic liquids across the liquid/liquid interface was also investigated, revealing partition coefficients of 6.0 and 7.6 for [P4444][6-AC] and [P4444][tau], respectively. Control studies elucidated that biphasic interfacial reduction was necessary to achieve stable nanoparticles possessing high catalytic activity. When the ionic liquid anion was instead replaced by the weakly coordinating bis(trifluoromethylsulfonyl)imide ([Tf2N]), photoreduction of Au(OH)4- led to holey, wavy gold nanowires instead of spherical nanoparticles, indicating the dramatic morphological control exerted by the coordination strength of the ionic liquid anion. This strategy is straightforward and simple and opens up a number of intriguing avenues for controllably preparing plasmonic colloids for a range of applications from catalysis to optical sensing.

6.
Chemistry ; 22(33): 11677-84, 2016 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-27405109

RESUMEN

To develop ionic liquid/porous silicon (IL/pSi) microarrays we have contact pin-printed 20 hydrophobic and hydrophilic ionic liquids onto as-prepared, hydrogen-passivated porous silicon (ap-pSi) and then determined the individual IL spot size, shape and associated pSi surface chemistry. The results reveal that the hydrophobic ionic liquids oxidize the ap-pSi slightly. In contrast, the hydrophilic ionic liquids lead to heavily oxidized pSi (i.e., ox-pSi). The strong oxidation arises from residual water within the hydrophilic ILs that is delivered from these ILs into the ap-pSi matrix causing oxidation. This phenomenon is less of an issue in the hydrophobic ILs because their water solubility is substantially lower.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA