Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 128(22): 227204, 2022 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-35714233

RESUMEN

We develop a general theory to classify magnetic skyrmions and related spin textures in terms of their magnetoelectric multipoles. Since magnetic skyrmions are now established in insulating materials, where the magnetoelectric multipoles govern the linear magnetoelectric response, our classification provides a recipe for manipulating the magnetic properties of skyrmions using applied electric fields. We apply our formalism to skyrmions and antiskyrmions of different helicities, as well as to magnetic bimerons, which are topologically, but not geometrically, equivalent to skyrmions. We show that the nonzero components of the magnetoelectric multipole and magnetoelectric response tensors are uniquely determined by the topology, helicity, and geometry of the spin texture. Therefore, we propose straightforward linear magnetoelectric response measurements as an alternative to Lorentz microscopy for characterizing insulating skyrmionic textures.

2.
Phys Rev Lett ; 128(11): 116402, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35363000

RESUMEN

In condensed matter systems, the electronic degrees of freedom are often entangled to form complex composites, known as hidden orders, which give rise to unusual properties, while escaping detection in conventional experiments. Here we demonstrate the existence of hidden k-space magnetoelectric multipoles in nonmagnetic systems with broken space-inversion symmetry. These k-space magnetoelectric multipoles are reciprocal to the real-space charge dipoles associated with the broken inversion symmetry. Using the prototypical ferroelectric PbTiO_{3} as an example, we show that their origin is a spin asymmetry in momentum space resulting from the broken space inversion symmetry associated with the ferroelectric polarization. In PbTiO_{3}, the k-space spin asymmetry corresponds to a pure k-space magnetoelectric toroidal moment, which can be detected using magnetic Compton scattering, an established tool for probing magnetism in ferromagnets or ferrimagnets with a net spin polarization, which has not been exploited to date for nonmagnetic systems. In particular, the k-space magnetoelectric toroidal moment combined with the spin-orbit interaction manifest in an antisymmetric magnetic Compton profile that can be reversed using an electric field. Our work suggests an experimental route to directly measuring and tuning hidden k-space magnetoelectric multipoles via specially designed magnetic Compton scattering measurements.

3.
J Phys Condens Matter ; 33(45)2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34352745

RESUMEN

Spin-orbit effects in heavy 5dtransition metal oxides, in particular, iridates, have received enormous current interest due to the prediction as well as the realization of a plethora of exotic and unconventional magnetic properties. While a bulk of these works are based on tetravalent iridates (d5), where the counter-intuitive insulating state of the rather extended 5dorbitals are explained by invoking strong spin-orbit coupling, the recent quest in iridate research has shifted to the other valencies of Ir, of which pentavalent iridates constitute a notable representative. In contrast to the tetravalent iridates, spin-orbit entangled electrons ind4systems are expected to be confined to theJ= 0 singlet state without any resultant moment or magnetic response. However, it has been recently predicted that, magnetism ind4systems may occur via magnetic condensation of excitations across spin-orbit-coupled states. In reality, the magnetism in Ir5+systems are often quite debatable both from theoretical as well as experimental point of view. Here we provide a comprehensive overview of the spin-orbit coupledd4model systems and its implications in the studied pentavalent iridates. In particular, we review here the current experimental and theoretical understanding of the double perovskite (A2BYIrO6,A= Sr, Ba,B= Y, Sc, Gd), 6H-perovskite (Ba3MIr2O9,M= Zn, Mg, Sr, Ca), post-perovskite (NaIrO3), and hexagonal (Sr3MIrO6) iridates, along with a number of open questions that require future investigation.

4.
Open Res Eur ; 1: 132, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37645180

RESUMEN

BACKGROUND: Magnetoelectric multipoles, which break both space-inversion and time-reversal symmetries, play an important role in the magnetoelectric response of a material. Motivated by uncovering the underlying fundamental physics of the magnetoelectric multipoles and the possible technological applications of magnetoelectric materials, understanding as well as detecting such magnetoelectric multipoles has become an active area of research in condensed matter physics. Here we employ the well-established Compton scattering effect as a possible probe for the magnetoelectric toroidal moments in LiNiPO 4. METHODS: We employ combined theoretical and experimental techniques to compute as well as detect the antisymmetric Compton profile in LiNiPO 4. For the theoretical investigation we use density functional theory to compute the anti-symmetric part of the Compton profile for the magnetic and structural ground state of LiNiPO 4. For the experimental verification, we measure the Compton signals for a single magnetoelectric domain sample of LiNiPO 4, and then again for the same sample with its magnetoelectric domain reversed. We then take the difference between these two measured signals to extract the antisymmetric Compton profile in LiNiPO 4. RESULTS: Our theoretical calculations indicate an antisymmetric Compton profile in the direction of the t y toroidal moment in momentum space, with the computed antisymmetric profile around four orders of magnitude smaller than the total profile. The difference signal that we measure is consistent with the computed profile, but of the same order of magnitude as the statistical errors and systematic uncertainties of the experiment. CONCLUSIONS: While the weak difference signal in the measurements prevents an unambiguous determination of the antisymmetric Compton profile in LiNiPO 4, our results motivate  further theoretical work to understand the factors that influence the size of the antisymmetric Compton profile, and to identify materials exhibiting larger effects.

5.
J Phys Condens Matter ; 31(18): 185802, 2019 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-30721889

RESUMEN

In the present paper, we have carried out a comparative first principles as well as model Hamiltonian study to understand the novel magnetism in 6H perovskite iridates Ba3IrTi2O9 and Ba3TiIr2O9 resulting from an unusual combination of geometrical as well as exchange frustration owing to their unique crystal geometry. Our model calculations corroborated with multipolar analysis provides a comprehensive understanding of the spin-orbit entangled [Formula: see text] pseudo-spin states in both materials. While, the [Formula: see text] character is quite robust in the former compound, it is found to be directly related to the nature of magnetism in the latter iridate. The identification of the relevant spin model for the ideal structure of Ba3IrTi2O9 suggests that the Heisenberg exchange interaction dominates the Kitaev term favoring long range magnetic order in the system in line with the ab initio study while the other iridate Ba3TiIr2O9 has the posibility to host novel spin-orbital singlet state with no resultant moment.

6.
J Phys Condens Matter ; 30(23): 235601, 2018 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-29701606

RESUMEN

Iridates such as Sr2IrO4 are of considerable interest owing to the formation of the Mott insulating state driven by a large spin-orbit coupling. However, in contrast to the expectation from the Nagaoka theorem that a single doped hole or electron destroys the anti-ferromagnetic (AFM) state of the half-filled Hubbard model in the large U limit, the anti-ferromagnetism persists in the doped Iridates for a large dopant concentration beyond half-filling. With a tight-binding description of the relevant [Formula: see text] states by the third-neighbor (t 1, t 2, t 3, U) Hubbard model on the square lattice, we examine the stability of the AFM state to the formation of a spin spiral state in the strong coupling limit. The third-neighbor interaction t 3 is important for the description of the Fermi surface of the electron doped system. A phase diagram in the parameter space is obtained for the regions of stability of the AFM state. Our results qualitatively explain the robustness of the AFM state in the electron doped iridate (such as Sr2-x La x IrO4), observed in many experiments, where the AFM state continues to be stable until a critical dopant concentration.

7.
Phys Rev Lett ; 116(9): 097205, 2016 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-26991199

RESUMEN

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...