Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37403401

RESUMEN

Among others, methionine residues are highly susceptible to host-generated oxidants. Repair of oxidized methionine (Met-SO) residues to methionine (Met) by methionine sulfoxide reductases (Msrs) play a chief role in stress survival of bacterial pathogens, including Salmonella Typhimurium. Periplasmic proteins, involved in many important cellular functions, are highly susceptible to host-generated oxidants. According to location in cell, two types of Msrs, cytoplasmic and periplasmic are present in S. Typhimurium. Owing to its localization, periplasmic Msr (MsrP) might play a crucial role in defending the host-generated oxidants. Here, we have assessed the role of MsrP in combating oxidative stress and colonization of S. Typhimurium. ΔmsrP (mutant strain) grew normally in in-vitro media. In comparison to S. Typhimurium (wild type), mutant strain showed mild hypersensitivity to HOCl and chloramine-T (ChT). Following exposure to HOCl, mutant strain showed almost similar protein carbonyl levels (a marker of protein oxidation) as compared to S. Typhimurium strain. Additionally, ΔmsrP strain showed higher susceptibility to neutrophils than the parent strain. Further, the mutant strain showed very mild defects in survival in mice spleen and liver as compared to wild-type strain. In a nutshell, our results indicate that MsrP plays only a secondary role in combating oxidative stress and colonization of S. Typhimurium.


Asunto(s)
Metionina Sulfóxido Reductasas , Salmonella typhimurium , Animales , Ratones , Metionina Sulfóxido Reductasas/genética , Metionina Sulfóxido Reductasas/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Virulencia , Oxidantes , Estrés Oxidativo , Metionina/metabolismo , Racemetionina/metabolismo , Oxidación-Reducción
2.
Sci Rep ; 12(1): 15979, 2022 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-36155623

RESUMEN

To survive and replicate in the host, S. Typhimurium have evolved several metabolic pathways. The glyoxylate shunt is one such pathway that can utilize acetate for the synthesis of glucose and other biomolecules. This pathway is a bypass of the TCA cycle in which CO2 generating steps are omitted. Two enzymes involved in the glyoxylate cycle are isocitrate lyase (ICL) and malate synthase (MS). We determined the contribution of MS in the survival of S. Typhimurium under carbon limiting and oxidative stress conditions. The ms gene deletion strain (∆ms strain) grew normally in LB media but failed to grow in M9 minimal media supplemented with acetate as a sole carbon source. However, the ∆ms strain showed hypersensitivity (p < 0.05) to hypochlorite. Further, ∆ms strain has been significantly more susceptible to neutrophils. Interestingly, several folds induction of ms gene was observed following incubation of S. Typhimurium with neutrophils. Further, ∆ms strain showed defective colonization in poultry spleen and liver. In short, our data demonstrate that the MS contributes to the virulence of S. Typhimurium by aiding its survival under carbon starvation and oxidative stress conditions.


Asunto(s)
Isocitratoliasa , Malato Sintasa , Acetatos/metabolismo , Carbono/metabolismo , Dióxido de Carbono , Glucosa , Glioxilatos/metabolismo , Ácido Hipocloroso , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Malato Sintasa/genética , Malato Sintasa/metabolismo , Nutrientes , Estrés Oxidativo , Salmonella typhimurium/metabolismo
3.
Andrology ; 9(6): 1943-1957, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34245495

RESUMEN

BACKGROUND: The excessive reactive oxygen species produced during semen-freezing and -thawing damage the macromolecules resulting in impairment of cellular functions. Proteins are the primary targets of oxidative damage, wherein methionine residues are more prone to oxidation and get converted into methionine sulfoxide, thus affecting the protein function. The methionine sulfoxide reductase A (MsrA) catalyzes the conversion of methionine sulfoxide to methionine and restores the functionality of defective proteins. OBJECTIVES: To establish the expression of MsrA in male reproductive organs, including semen and its effect on quality of cryopreserved semen upon exogenous supplementation, taking buffalo semen as a model. MATERIALS AND METHODS: The expression of MsrA was established by immunohistochemistry, PCR, and Western blots. Further, the effect of recombinant MsrA (rMsrA) supplementation on the quality of cryopreserved spermatozoa was assessed in three treatment groups containing 1.0, 1.5, and 2.0 µg of rMsrA/50 million spermatozoa in egg yolk glycerol extender along with a control group; wherein the post-thaw progressive motility, viability, membrane integrity, and zona binding ability of cryopreserved spermatozoa were studied. RESULTS: The MsrA was expressed in buffalo testis, epididymis, accessory sex glands, and spermatozoa except in seminal plasma. In group 2, the supplementation has resulted in a significant (p < 0.05) improvement as compared to the control group in mean progressive motility (47.50 ± 2.50 vs. 36.25 ± 2.63), viability (56.47 ± 1.85 vs. 48.05 ± 2.42), HOST (50.76 ± 1.73 vs. 44.29 ± 1.29), and zona binding ability of spermatozoa (149.50 ± 8.39 vs. 29.50 ± 2.85). DISCUSSION AND CONCLUSION: In the absence of native MsrA of seminal plasma, the supplementations of rMsrA may repair the oxidatively damaged seminal plasma proteins and exposed sperm plasma membrane proteins resulting in better quality with a fivefold increase in fertilizability of frozen-thawed spermatozoa. The findings can be extended to other species to improve the semen quality with the variation in the amounts of rMsrA supplementation.


Asunto(s)
Criopreservación , Crioprotectores/administración & dosificación , Fertilización , Metionina Sulfóxido Reductasas/administración & dosificación , Espermatozoides/efectos de los fármacos , Animales , Búfalos , Crioprotectores/metabolismo , Suplementos Dietéticos , Masculino , Metionina Sulfóxido Reductasas/metabolismo , Modelos Animales , Estrés Oxidativo/efectos de los fármacos , Semen , Análisis de Semen , Preservación de Semen
4.
Cell Physiol Biochem ; 52(3): 532-552, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30897320

RESUMEN

BACKGROUND/AIMS: Thrombospondins (TSPs) are large multi-modular proteins, identified as natural angiogenesis inhibitors that exert their activity by binding to CD36 and CD47 receptors. The anti-angiogenic effect of TSPs in luteal regression of water buffalo has not been addressed. The present study characterized the expression pattern and localization of TSPs and their receptors in ovarian corpus luteum during different stages of development in buffalo. This study also elucidated the effect of exogenous Thrombospondin1 (TSP1) or the knocking out of the endogenous protein on luteal cell viability and function. Further, the in vitro transcriptional interaction of TSP1 with hormones, LH, PGF2α and angiogenic growth factors, VEGF and FGF2 were also evaluated. METHODS: First, the CLs were classified into four groups based on macroscopic observation and progesterone concentration. mRNA expression of examined factors was measured by qPCR, localization by immunoblotting and immunohistochemistry. TSP1 was knocked out (KO) in cultured luteal cells isolated from late luteal stage CLs (day 1116) by CRISPR/Cas9 mediated gene editing technology in order to functionally validate the TSP1 gene. Isolated cells from late stage CLs were also stimulated with different doses of TSP1, LH, PGF2α, VEGF and FGF2 for various time intervals to determine transcriptional regulation of thrombospondins. RESULTS: mRNA expression of TSPs and their receptors were found to be significantly higher in late and regressed stage of CL as compared to other groups which was consistent with the findings of immunoblotting and immunolocalization experiments. It was observed that TSP1 induced apoptosis, down regulated angiogenic growth factors, VEGF and FGF2 and attenuated progesterone production in cultured luteal cells. However, knocking out of endogenous TSP1 with CRISPR/Cas9 system improved the viability of luteal cells, progesterone synthesis and upregulated the expression of VEGF and FGF2 in the KO luteal cells. PGF2α induced the upregulation of TSPs and Caspase 3 transcripts, whereas treatment with LH and angiogenic growth factors (VEGF and FGF2) down regulated the TSP system in luteal cells. CONCLUSION: Collectively, these data provide evidence that thrombospondins along with their receptors are expressed at varying levels in different stages of CL progression with maximum expression during the late and regressing stages. These results are consistent with the hypothesis that thrombospondins stimulated by PGF2α plays an essential modulatory role in bringing about structural and functional luteolysis in buffalo.


Asunto(s)
Sistemas CRISPR-Cas/genética , Cuerpo Lúteo/metabolismo , Edición Génica , Trombospondina 1/genética , Animales , Apoptosis , Búfalos/metabolismo , Antígenos CD36/genética , Antígenos CD36/metabolismo , Antígeno CD47/genética , Antígeno CD47/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Supervivencia Celular , Cuerpo Lúteo/citología , Cuerpo Lúteo/patología , Dinoprost/metabolismo , Regulación hacia Abajo , Femenino , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Trombospondina 1/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Mol Reprod Dev ; 84(3): 212-221, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27987309

RESUMEN

Regucalcin is a multi-functional, calcium-binding protein with roles in calcium homeostasis, apoptosis, cell proliferation, and free radical neutralization. Regucalcin is broadly expressed in the male reproductive organs of rat and bovine; here, we report its expression in the reproductive tract of male buffalo-especially in testis, epididymis, seminal vesicle, prostate, and bulbourethral gland of buffalo-as analyzed by real-time PCR, Western blot, and immunolocalization. Regucalcin degradation in seminal plasma, despite its high abundance in vesicular fluid, was demonstrated using recombinant regucalcin co-incubated with buffalo seminal plasma. This depletion of regucalcin appears to be related to its suppressive effect on in vitro sperm capacitation, observed using the chlortetracycline assay after treating buffalo spermatozoa with recombinant protein. Indeed, addition of recombinant regucalcin to capacitating media significantly reduced (P < 0.05) the percentage of capacitated spermatozoa to 6.1 ± 0.6 from 36.4 ± 1.8 in the untreated group. Taken together, the wide distribution of regucalcin in male buffaloes, versus its degradation in the seminal plasma and suppressive effects on in vitro capacitation of spermatozoa, indicate its possible anti-capacitation role in the reproductive tract. Mol. Reprod. Dev. 84: 212-221, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Búfalos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Genitales Masculinos/metabolismo , Proteolisis , Semen/metabolismo , Capacitación Espermática , Espermatozoides/metabolismo , Animales , Masculino
6.
Comb Chem High Throughput Screen ; 20(3): 186-192, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28000561

RESUMEN

BACKGROUND: Regucalcin (RGN), a calcium regulating protein having anti-prolific, antiapoptotic functions, plays important part in the biosynthesis of ascorbic acid. It is a highly conserved protein that has been reported from many tissue types of various vertebrate species. Employing its effect of regulating enzyme activities through reaction with sulfhydryl group (-SH) and calcium, structural level study believed to offer a better understanding of binding properties and regulatory mechanisms of RGN, was performed. MATERIAL AND METHOD: Using sample from testis of Bubalus bubalis, amplification of regucalcin (RGN) gene was subjected to characterization by performing digestion using different restriction endonucleases (RE). Alongside, cDNA was cloned into pPICZαC vector and transformed in DH5α host for custom sequencing. To get a better insight of its structural characteristics, three dimensional (3D) structure of protein sequence was generated using in silico molecular modelling approach. The full trajectory analysis of structure was achieved by the Molecular Dynamics (MD) that explains the stability, flexibility and robustness of protein during simulation in a time of 50ns. Molecular docking against 1,5-anhydrosorbitol was performed for functional characterization of RGN. RESULTS: Preliminary screening of amplified products on Agarose gel showed expected size of ~893 bp of PCR product corresponding to RGN. Following sequencing, BLASTp search of the target sequence revealed that it shares 91% similarity score with human senescence marker protein-30 (pdb id: 3G4E). Molecular docking of 1,5-anhydrosorbitol reveals information regarding important binding site residues of RGN. 1,5-anhydrosorbitol was found to interact with binding free energy of - 6.01 Kcal/mol. RMSD calculation of subunits A, B and D-F might be responsible for functional and conserved regions of modeled protein. CONCLUSION: Three dimensional structure of RGN was generated and its interactions with 1,5- anhydrosorbitol, demonstrates the role of key binding residues. Until now, no structural details were available for buffalo RGN proteins, hence this study will broaden the horizon towards understanding the structural and functional aspects of different proteins in cattle.


Asunto(s)
Proteínas de Unión al Calcio/química , Modelos Moleculares , Simulación de Dinámica Molecular , Animales , Sitios de Unión , Búfalos , Proteínas de Unión al Calcio/metabolismo , Desoxiglucosa/metabolismo , Masculino , Simulación del Acoplamiento Molecular , Unión Proteica , Testículo/química
7.
Cell Biol Int ; 38(8): 953-61, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24687727

RESUMEN

Neural stem cells (NSCs) can self-renew and give rise to neurons, astrocytes and oligodendrocytes; they are found in the nervous system of mammalian organisms, representing a promising resource for both fundamental research and therapeutics. There have been few investigations on NSCs in the livestock species. Therefore, we have successfully isolated and characterised NSCs from the foetal brain of a small domestic animal, the goat (called GNSCs). These cells from the foetal brain showed self-renewal, rapid proliferation with a population doubling time of 88 h, were morphologically homogeneous and maintained normal chromosome throughout the culture period. The cells expressed NSC-specific markers (Sox2, Pax6 and Mushashi), but were negative for CD34 and CD45. They were capable of multi-differentiation into neurons, astrocytes, oligodendrocytes, as well as adipocytes and osteocytes. The availability of such cells may hold great interest for basic and applied neuroscience.


Asunto(s)
Células-Madre Neurales/fisiología , Animales , Antígenos de Diferenciación/metabolismo , Diferenciación Celular , Proliferación Celular , Separación Celular , Células Cultivadas , Cabras
8.
Trop Anim Health Prod ; 44(8): 1905-12, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22535151

RESUMEN

The present study has demonstrated the expression of HSP60, HSP70, HSP90, and UBQ in peripheral blood mononuclear cells (PBMCs) during different seasons in three different age groups (Groups I, II, and III with age of 0-2, 2-5, and >5 years, respectively) of goats of tropical and temperate regions. Real-time polymerase chain reaction was applied to investigate mRNA expression of examined factors. Specificity of the desired products was documented using analysis of the melting temperature and high-resolution gel electrophoresis to verify that the transcripts are of the exact molecular size predicted. The mRNA expression of HSP60, HSP90, and UBQ was significantly higher (P < 0.05) in all age groups during peak summer season as compared with peak winter season in both tropical and temperate region goats. HSP70 mRNA expression was significantly higher (P < 0.05) during summer season as compared with winter season in tropical region goats. However, in the temperate region, in goats from all the three age groups studied, a non-significant difference of HSP70 expression between summer and winter seasons was noticed. In conclusion, results demonstrate that (1) HSP genes are expressed in caprine PBMCs and (2) higher expression of HSPs during thermal stress suggest possible involvement of them to ameliorate deleterious effect of thermal stress so as to maintain cellular integrity and homeostasis in goats.


Asunto(s)
Cabras/fisiología , Proteínas de Choque Térmico/biosíntesis , Respuesta al Choque Térmico , Leucocitos Mononucleares/metabolismo , Ubiquitina/biosíntesis , Factores de Edad , Animales , Electroforesis en Gel de Agar/veterinaria , Proteínas de Choque Térmico/sangre , Proteínas de Choque Térmico/genética , Calor/efectos adversos , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , ARN Mensajero/sangre , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Estaciones del Año , Especificidad de la Especie , Clima Tropical , Ubiquitina/sangre , Ubiquitina/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA