Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1637, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38388640

RESUMEN

Translational control exerts immediate effect on the composition, abundance, and integrity of the proteome. Ribosome-associated quality control (RQC) handles ribosomes stalled at the elongation and termination steps of translation, with ZNF598 in mammals and Hel2 in yeast serving as key sensors of translation stalling and coordinators of downstream resolution of collided ribosomes, termination of stalled translation, and removal of faulty translation products. The physiological regulation of RQC in general and ZNF598 in particular in multicellular settings is underexplored. Here we show that ZNF598 undergoes regulatory K63-linked ubiquitination in a CNOT4-dependent manner and is upregulated upon mitochondrial stresses in mammalian cells and Drosophila. ZNF598 promotes resolution of stalled ribosomes and protects against mitochondrial stress in a ubiquitination-dependent fashion. In Drosophila models of neurodegenerative diseases and patient cells, ZNF598 overexpression aborts stalled translation of mitochondrial outer membrane-associated mRNAs, removes faulty translation products causal of disease, and improves mitochondrial and tissue health. These results shed lights on the regulation of ZNF598 and its functional role in mitochondrial and tissue homeostasis.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae , Animales , Humanos , Proteínas Portadoras/metabolismo , Drosophila/metabolismo , Homeostasis , Mamíferos/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
EMBO Rep ; 24(4): e55548, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36794623

RESUMEN

Mechanisms underlying the depletion of NAD+ and accumulation of reactive oxygen species (ROS) in aging and age-related disorders remain poorly defined. We show that reverse electron transfer (RET) at mitochondrial complex I, which causes increased ROS production and NAD+ to NADH conversion and thus lowered NAD+ /NADH ratio, is active during aging. Genetic or pharmacological inhibition of RET decreases ROS production and increases NAD+ /NADH ratio, extending the lifespan of normal flies. The lifespan-extending effect of RET inhibition is dependent on NAD+ -dependent Sirtuin, highlighting the importance of NAD+ /NADH rebalance, and on longevity-associated Foxo and autophagy pathways. RET and RET-induced ROS and NAD+ /NADH ratio changes are prominent in human induced pluripotent stem cell (iPSC) model and fly models of Alzheimer's disease (AD). Genetic or pharmacological inhibition of RET prevents the accumulation of faulty translation products resulting from inadequate ribosome-mediated quality control, rescues relevant disease phenotypes, and extends the lifespan of Drosophila and mouse AD models. Deregulated RET is therefore a conserved feature of aging, and inhibition of RET may open new therapeutic opportunities in the context of aging and age-related diseases including AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , NAD , Especies Reactivas de Oxígeno/metabolismo , Electrones , Células Madre Pluripotentes Inducidas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Enfermedad de Alzheimer/genética , Drosophila/genética , Drosophila/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(42): e2202322119, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36170200

RESUMEN

An overarching goal of aging and age-related neurodegenerative disease research is to discover effective therapeutic strategies applicable to a broad spectrum of neurodegenerative diseases. Little is known about the extent to which targetable pathogenic mechanisms are shared among these seemingly diverse diseases. Translational control is critical for maintaining proteostasis during aging. Gaining control of the translation machinery is also crucial in the battle between viruses and their hosts. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing COVID-19 pandemic. Here, we show that overexpression of SARS-CoV-2-encoded nonstructural protein 1 (Nsp1) robustly rescued neuromuscular degeneration and behavioral phenotypes in Drosophila models of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. These diseases share a common mechanism: the accumulation of aberrant protein species due to the stalling and collision of translating ribosomes, leading to proteostasis failure. Our genetic and biochemical analyses revealed that Nsp1 acted in a multipronged manner to resolve collided ribosomes, abort stalled translation, and remove faulty translation products causative of disease in these models, at least in part through the ribosome recycling factor ABCE1, ribosome-associated quality-control factors, autophagy, and AKT signaling. Nsp1 exhibited exquisite specificity in its action, as it did not modify other neurodegenerative conditions not known to be associated with ribosome stalling. These findings uncover a previously unrecognized mechanism of Nsp1 in manipulating host translation, which can be leveraged for combating age-related neurodegenerative diseases that are affecting millions of people worldwide and currently without effective treatment.


Asunto(s)
COVID-19 , Enfermedades Neurodegenerativas , ARN Polimerasa Dependiente del ARN , Ribosomas , Proteínas no Estructurales Virales , Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Animales , COVID-19/genética , Drosophila , Humanos , Enfermedades Neurodegenerativas/genética , Pandemias , Enfermedad de Parkinson , Proteínas Proto-Oncogénicas c-akt , ARN Mensajero/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , SARS-CoV-2/genética , Proteínas no Estructurales Virales/metabolismo
4.
J Control Release ; 346: 1-19, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398173

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons within the substantia nigra. The specific molecular mechanisms through which PD-associated neuronal loss occurs remain unclear, and there is no available effective treatment against PD-related neurodegeneration. Resveratrol (RSV) has exhibited promising neuroprotective effects via antioxidant and anti-inflammatory activity. However, its poor bioavailability in the brain represents a challenge for its application in PD treatment. In this study, we synthesized RSV-loaded PLGA nanoparticles (RSV-PLGA-NPs) conjugated with lactoferrin (Lf) to enhance RSV diffusion into the brain and assessed whether this formulation improved the neuroprotective effects of RSV in experimental PD models. The Lf-conjugated RSV-PLGA-NPs (Lf-RSV-PLGA-NPs) exhibited enhanced internalization into SH-SY5Y and human brain microvascular endothelial cells as compared to RSV-PLGA-NPs and free RSV. Further, Lf-RSV-PLGA-NPs were more effective than RSV-PLGA-NPs and free RSV in attenuating the MPP+-induced generation of reactive oxygen species, reduction of mitochondrial membrane potential, and cell death. Importantly, Lf conjugation specifically increased the accumulation of RSV-PLGA-NPs in the brain as determined via bioluminescent imaging analyses. Our formulation substantially enhanced the neuroprotective effects of RSV in the MPTP-induced PD model. Hence, Lf-RSV-PLGA-NPs represent a promising tool for improving RSV bioavailability and neuroprotection within the brain.


Asunto(s)
Nanopartículas , Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Barrera Hematoencefálica , Células Endoteliales , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Resveratrol
5.
Biochem Pharmacol ; 192: 114719, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34352280

RESUMEN

The neuropathological hallmark of Parkinson's disease (PD) is the preferential loss of dopaminergic neurons in the substantia nigra and presence of Lewy bodies in the dying neurons. Though specific molecular mechanisms for the neurodegeneration remains to be clarified, mitochondrial dysfunction and increased oxidative stress are major players associated with PD pathogenesis and these pathogenic mechanisms can be reproduced in cells and animals by application of various neurotoxins such as MPP+. In this study, we attempted to determine the neuroprotective effects of methylene blue (MB) against 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity, and to elucidate its action mechanism. We observed that MB attenuated MPP+-induced apoptotic cell death in SH-SY5Y cells and the mescencephalic dopaminergic neurons. In addition, MB protected the cells against MPP+-induced oxidative stress and mitochondrial dysfunction as evidenced by restoration of mitochondrial complex I activity and ATP levels, and attenuation of oxidative stress. Moreover, we demonstrated that MB induced antioxidant molecules, and activated Nrf2 pathway through AKT activation. These results indicate that MB protects the neurons from MPP+-induced toxicity through activation of antioxidant system, thereby reducing the oxidative stress and mitochondrial impairment, implying the potential use of MB in the treatment of neurodegenerative diseases such as PD.


Asunto(s)
1-Metil-4-fenilpiridinio/toxicidad , Azul de Metileno/farmacología , Mitocondrias/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/farmacología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Herbicidas/toxicidad , Humanos , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Factor 2 Relacionado con NF-E2/agonistas , Neuroprotección/fisiología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo/fisiología
6.
Neurochem Int ; 148: 105120, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34197898

RESUMEN

Oxidative stress and mitochondrial dysfunction are now widely accepted as the major factors involved in the pathogenesis of Parkinson's disease (PD). Rotenone, a commonly used environmental toxin also reproduces these principle pathological features of PD. Hence, it is used frequently to induce experimental PD in cells and animals. In this study, we evaluated the neuroprotective effects of metformin against rotenone-induced toxicity in SH-SY5Y cells. Metformin treatment clearly rescued these cells from rotenone-mediated cell death via the reduction of the cytosolic and mitochondrial levels of reactive oxygen species and restoration of mitochondrial function. Furthermore, metformin upregulated PGC-1α, the master regulator of mitochondrial biogenesis and key antioxidant molecules, including glutathione and superoxide dismutase. We demonstrated that the drug exerted its cytoprotective effects by activating nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase (HO)-1 pathway, which in turn, is dependent on AKT activation by metformin. Thus, our results implicate that metformin provides neuroprotection against rotenone by inhibiting oxidative stress in the cells by inducing antioxidant system via upregulation of transcription mediated by Nrf2, thereby restoring the rotenone-induced mitochondrial dysfunction and energy deficit in the cells.


Asunto(s)
Hipoglucemiantes/farmacología , Metformina/farmacología , Enfermedades Mitocondriales/prevención & control , Factor 2 Relacionado con NF-E2/genética , Proteína Oncogénica v-akt/genética , Estrés Oxidativo/efectos de los fármacos , Rotenona/antagonistas & inhibidores , Rotenona/toxicidad , Transducción de Señal/efectos de los fármacos , Desacopladores/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo
7.
Biochem Pharmacol ; 180: 114193, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32800853

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease, which is characterized by the progressive loss of dopaminergic neurons in the substantia nigra, leading to a decrease in striatal dopamine. There is no antiparkinsonian therapy that offers a true disease-modifying treatment till date and there is an urgent need for a safe and effective neuroprotective or neurorestorative therapy. Our previous study demonstrated that metformin upregulated dopamine in the mouse brain and provided significant neuroprotection in animal model of PD. Therefore, we designed this study to investigate the molecular mechanism underlying such pharmacological effect of metformin. Herein, we found that metformin enhanced the phosphorylation of tyrosine hydroxylase (TH) which was accompanied by increase in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and activation of their downstream signaling pathways in the mouse brain and SH-SY5Y cells. We further investigated the role of the neurotrophic factors in the activation of TH and observed that both BDNF and GDNF-induction were essential for metformin-induced TH activation. We found that the AMPK/aPKCζ/CREB pathway was essential for metformin-induced GDNF upregulation and TH activation. Thus, this study reveals the TH-activating property of metformin in the brain via induction of neurotrophic factors along with the signaling mechanism. These results potentiate the candidacy of metformin not only as a neuroprotective agent, but also as restorative therapy for the treatment of PD.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Dopamina/biosíntesis , Factor Neurotrófico Derivado de la Línea Celular Glial/biosíntesis , Metformina/farmacología , Proteína Quinasa C/metabolismo , Animales , Línea Celular Tumoral , Humanos , Hipoglucemiantes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
8.
J Nutr Biochem ; 69: 73-86, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31063918

RESUMEN

Microbiota in the gut affect brain physiology via various pathways, and dysbiosis seems to play a role in the pathogenesis of Parkinson's disease (PD). Probiotics showed pleiotropic effects on functions of the central nervous system via microbiota-gut-brain axis. However, no studies displayed the neuroprotective effects of probiotics in the Parkinson's disease. This study aimed to test the neuroprotective effects of probiotics in two different models of PD. We evaluated neuroprotective effects of a probiotic cocktail containing Lactobacillus rhamnosus GG, Bifidobacterium animalis lactis, and Lactobacillus acidophilus in PD models induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or rotenone utilizing behavioral tests, immunohistochemistry and neurochemical analysis. To assure the neuroprotection came from increased production of butyrate, we further determined beneficial effects of butyrate in the MPTP-mediated PD model. The probiotic mixture overtly protected the dopaminergic neurons against MPTP neurotoxicity. However, the probiotics downregulated expression of monoamine oxidase (MAO) B in the striatum, which was accompanied by a lower level of 1-methyl-4-phenylpyridinium (MPP+), the main neurotoxic metabolite of MPTP. Thus, we extended the investigation into the rotenone-induced PD model. Rescuing effects of the probiotics were observed in the setup, which came with increased levels of neurotrophic factors and butyrate in the brain. Lactobacillus rhamnosus GG was identified to be a major contributor to the induction of neurotrophic factors and downregulation of MAO B. Finally, we demonstrated that sodium butyrate attenuated MPTP-induced neuronal loss in the nigrostriatal pathway. Probiotics could ameliorate neurodegeneration at least partially by increasing butyrate level. These data highlight the role of probiotics for brain health, and their potential as a preventive measure for neurodegenerative diseases such as PD.


Asunto(s)
Butiratos/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Probióticos/farmacología , Rotenona/toxicidad , Acetilación/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Modelos Animales de Enfermedad , Dopamina , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Histonas/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Masculino , Ratones Endogámicos C57BL , Monoaminooxidasa/metabolismo , Neuroglía/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico
9.
Neurotoxicology ; 71: 113-121, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30605763

RESUMEN

Animal models for Parkinson's disease (PD) are very useful in understanding the pathogenesis of PD and screening for new therapeutic approaches. 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP) and rotenone are common neurotoxins used for the development of experimental PD models, and both inhibit complex I of mitochondria; this is thought to be an instrumental mechanism for dopaminergic neurodegeneration in PD. In this study, we treated mice with MPTP (30 mg/kg/day) or rotenone (2.5 mg/kg/day) for 1 week and compared the neurotoxic effects of these toxins. MPTP clearly produced dopaminergic lesions in both the substantia nigra and the striatum as shown by loss of dopaminergic neurons, depletion of striatal dopamine, activation of glial cells in the nigrostriatal pathway and behavioral impairment. In contrast, rotenone treatment did not show any significant neuronal injury in the nigrostriatal pathway, but it caused neurodegeneration and glial activation only in the hippocampus. MPTP showed no such deleterious effects in the hippocampus suggesting the higher susceptibility of the hippocampus to rotenone than to MPTP. Interestingly, rotenone caused upregulation of the neurotrophic factors and their downstream PI3K-Akt pathway along with adenosine monophosphate-activated protein kinase (AMPK) activation. These results suggest that MPTP-induced dopaminergic neurotoxicity is more acute and specific in comparison to rotenone toxicity, and compensatory brain-derived neurotrophic factor (BDNF) induction and AMPK activation in the rotenone-treated brain might suppress the neuronal injury.


Asunto(s)
Encéfalo/efectos de los fármacos , Intoxicación por MPTP/metabolismo , Intoxicación por MPTP/patología , Neuronas/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Rotenona/toxicidad , Ácido 3,4-Dihidroxifenilacético/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Dopamina/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Trastornos Parkinsonianos/inducido químicamente
10.
J Chem Neuroanat ; 94: 173-182, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30040987

RESUMEN

IL-32 is a proinflammatory cytokine, and involved in various diseases including infection, inflammation, and cancer. However, effects of IL-32 on neuroinflammation remain obscure. Herein, we examined the effects of IL-32ß on systemic LPS-induced neuroinflammation using IL-32ß transgenic (Tg) mice. IL-32ß wild type (WT) and Tg mice received LPS injection (5 mg/kg, i.p.), and then neuroinflammatory responses were evaluated. Systemic LPS caused remarkable gliosis in the brain at 12 h regardless of genotypes. The gliosis in WT mice was sustained by 24 h, whereas it became more severe in Tg mice by 24 h. Proinflammatory cytokines and proteins were increased at 12 h both in WT and Tg brains. The elevated levels of TNFα and VCAM-1were not altered over time, while levels of IL-6, IL-1ß and iNOS were dropped in WT mice. In contrast, elevated levels IL-6, IL-1ß, iNOS and VCAM-1 were sustained, and level of TNFα was augmented in Tg brains by 24 h. Interestingly, level of IL-10 mRNA in Tg mice was remarkably higher than in WT mice at 0 h, which was decreased at 12 h and maintained by 24 h. In WT brain, mRNA level of IL-10 was raised at 12 h after LPS injection, and further increased at 24 h. Activation of NF-κB signaling pathway was detected in glia cells after LPS injection which was exaggerated at 24 h in Tg mice in comparison to WT mice. These results indicate that IL-32ß enhances neuroinflammatory responses caused by systemic LPS, and this might be attributable to prolonged activation of NF-κB signaling pathway.


Asunto(s)
Encéfalo/patología , Gliosis/patología , Inflamación/patología , Interleucinas/genética , Lipopolisacáridos , Animales , Encéfalo/metabolismo , Citocinas/metabolismo , Gliosis/inducido químicamente , Gliosis/metabolismo , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucinas/metabolismo , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal , Molécula 1 de Adhesión Celular Vascular/metabolismo
11.
Ann N Y Acad Sci ; 1431(1): 58-71, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29882218

RESUMEN

The relatively old, yet clinically used, drug methylene blue (MB) is known to possess neuroprotective properties by reducing aggregated proteins, augmenting the antioxidant response, and enhancing mitochondrial function and survival in various models of neurodegenerative diseases. In this study, we aimed to examine the effects of MB in Parkinson's disease (PD) in vivo and in vitro models by using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+ ) with a focus on possible effects on induction of neurotrophic factors. Our results indicate that pretreatment with MB significantly attenuated MPTP-induced loss of dopaminergic neurons, glial cell activation, and depletion of dopamine. We also found that MB upregulated brain-derived neurotrophic factor (BDNF) and activated its downstream signaling pathways, suggesting that BDNF might be a contributor to MB-associated neuroprotection. Specific inhibition of the BDNF receptor or extracellular signal-regulated kinase (Erk) reversed the MB-mediated protection against MPP+ toxicity, thus implying a role for BDNF and the Erk pathway in the neuroprotective effects. Taken together, our data suggest that MB protects neurons from MPTP neurotoxicity via induction of BDNF. Further study to determine whether MB preserves dopaminergic neurons in the brains of PD patients is warranted.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Intoxicación por MPTP/prevención & control , Azul de Metileno/farmacología , Fármacos Neuroprotectores/farmacología , Regulación hacia Arriba/efectos de los fármacos , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Intoxicación por MPTP/metabolismo , Masculino , Azul de Metileno/uso terapéutico , Ratones , Fármacos Neuroprotectores/uso terapéutico , Fosforilación/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
12.
Mol Neurobiol ; 55(1): 554-566, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-27975170

RESUMEN

Neurotrophic factors are essential for neuronal survival, plasticity, and development and have been implicated in the action mechanism of antidepressants. In this study, we assessed the neurotrophic factor-inducing and neuroprotective properties of antidepressants. In the first part of the study, we found that fluoxetine, imipramine, and milnacipran (i.p., 20 mg/kg/day for 1 week or 3 weeks) upregulated brain-derived neurotrophic factor in the striatum and substantia nigra both at 1 week and 3 weeks. In contrast, an increase in the glial-derived neurotrophic factor was more obvious at 3 weeks after the antidepressants treatment. Specifically, it was found that fluoxetine and imipramine are more potent in raising the levels of neurotrophic factors than milnacipran. Furthermore, antidepressants elevated the phosphorylation of extracellular signal-regulated-protein kinase (ERK1/2) and the serine/threonine kinase Akt. In the second part of the study, we compared the neuroprotective effects of fluoxetine, imipramine, and milnacipran in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson's disease. Pretreament with fluoxetine, imipramine or milnacipran for 3 weeks reduced MPTP-induced dopaminergic neurodegeneration and microglial activation in the nigrostriatal pathway. Neurochemical analysis by HPLC exhibited that antidepressants attenuated the depletion of striatal dopamine. In consistent, beam test showed that behavioral impairment was ameliorated by antidepressants. Neuroprotective effects were more prominent in the fluoxetine or imipramine treatment group than in milnacipran treatment group. Finally, we found that neuroprotection of the antidepressants against 1-methyl-4-phenylpyridinium neurotoxicity in SH-SY5Y cells was attenuated by ERK or Akt inhibitor. These results indicate that neuroprotection by antidepressants might be associated with the induction of neurotrophic factors, and antidepressant could be a potential therapeutic intervention for treatment of Parkinson's disease.


Asunto(s)
Antidepresivos/uso terapéutico , Factores de Crecimiento Nervioso/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/tratamiento farmacológico , Regulación hacia Arriba , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina , Animales , Antidepresivos/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Sustancia Negra/fisiopatología , Regulación hacia Arriba/efectos de los fármacos
13.
Neuropharmacology ; 125: 396-407, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28807678

RESUMEN

In spite of the massive research for the identification of neurorestorative or neuroprotective intervention for curing Parkinson's disease (PD), there is still lack of clinically proven neuroprotective agents. Metformin, a common anti-hyperglycemic drug has been known to possess neuroprotective properties. However, specific mechanisms by which metformin protects neurons from 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity remain to be elucidated. In this study, we assessed the neuroprotective effects of metformin in the subchronic MPTP model of PD, and explored its feasible mechanisms for neuroprotection. Animals received saline or MPTP injection (30 mg/kg/day) for the first 7 days, and then saline or metformin (200 mg/kg/day) for the next 7 days. Immunohistochemical stainings showed that metformin rescued the tyrosine hydroxylase-positive neurons and attenuated astroglial activation in the nigrostriatal pathway. In parallel, metformin restored dopamine depletion and behavioral impairments exerted by MPTP. Western blot analysis revealed that metformin ameliorated MPTP-induced α-synuclein phosphorylation which was accompanied by increased methylation of protein phosphatase 2A (PP2A), a phosphatase related to α-synuclein dephosphorylation. Moreover, the metformin regimen significantly increased the level of brain derived neurotrophic factor in the substantia nigra, and activated signaling pathways related to cell survival. Proof of concept study revealed that inhibition of PP2A or tropomyosin receptor kinase B reversed neuroprotective property of metformin in SH-SY5Y cells. Our results indicate that metformin provides neuroprotection against MPTP neurotoxicity, which might be mediated by inhibition of α-synuclein phosphorylation and induction of neurotrophic factors.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Metformina/farmacología , Fármacos Neuroprotectores/farmacología , alfa-Sinucleína/metabolismo , Animales , Antiparkinsonianos/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Intoxicación por MPTP/patología , Masculino , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/metabolismo , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Prueba de Estudio Conceptual , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Receptor trkB/antagonistas & inhibidores , Receptor trkB/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo
14.
Neurosci Res ; 114: 62-69, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27667002

RESUMEN

Accumulating evidence suggests that chronic inflammation plays a role in the progressive dopaminergic neurodegeneration that occurs in Parkinson's disease. It has been hypothesized that inflammation mediates neuronal damage via exacerbation of a vicious cycle of oxidative stress and mitochondrial dysfunction. The bacterial endotoxin, lipopolysaccharide (LPS), induces microglial activation and inflammation driven dopaminergic neurodegeneration. In order to test the hypothesis that LPS-induced inflammatory response might damage mitochondrial structure and function leading to nigral dopaminergic neuron loss, we injected LPS or saline into the striatum of rats. Here, we found that intrastriatal LPS induced deficit in mitochondrial respiration, damage to mitochondrial cristae, mitochondrial oxidation and nitration. Finally, we found significant loss of dopaminergic neurons in the substantia nigra one week after LPS injection. This study indicates that LPS-induced dopaminergic neurodegeneration might be exerted by mitochondrial injury.


Asunto(s)
Lipopolisacáridos/toxicidad , Enfermedades Mitocondriales/etiología , Degeneración Estriatonigral , Sustancia Negra , Animales , Recuento de Células , Modelos Animales de Enfermedad , Masculino , Microscopía Electrónica , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ratas , Ratas Sprague-Dawley , Degeneración Estriatonigral/inducido químicamente , Degeneración Estriatonigral/complicaciones , Degeneración Estriatonigral/patología , Sustancia Negra/metabolismo , Sustancia Negra/patología , Sustancia Negra/ultraestructura , Tirosina 3-Monooxigenasa/metabolismo
15.
Neurochem Int ; 102: 79-88, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27956238

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder characterized by prominent loss of the nigral dopaminergic neurons and motor symptoms, such as resting tremor and bradykinesia. Evidence suggests that neuroinflammation may play a critical role in PD pathogenesis. Interleukin (IL)-32 is a newly-identified proinflammatory cytokine, which regulates innate and adaptive immune responses by activating p38 MAPK and NF-κB signaling pathways. The cytokine has been implicated in cancers and autoimmune, inflammatory, and infectious diseases. In this study, we attempted to identify the effects of IL-32ß on dopaminergic neurotoxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), using IL-32ß transgenic mice. Male wild type and IL-32ß transgenic mice received intraperitoneal injections of vehicle or MPTP (15 mg/kg × 4). Immunohistochemistry showed that overexpression of IL-32ß significantly increased MPTP-mediated loss of dopaminergic neurons in the substantia nigra and deletion of tyrosine hydroxylase-positive fibers in the striatum. Dopamine depletion in the striatum and deficit in locomotor activity were enhanced in IL-32ß transgenic mice. These results were accompanied by higher neuroinflammatory responses in the brains of transgenic mice. Finally, we found that IL-32ß exaggerated MPTP-mediated activation of p38 MAPK and JNK pathways, which have been shown to be involved in MPTP neurotoxicity. These results suggest that IL-32ß exacerbates MPTP neurotoxicity through enhanced neuroinflammatory responses.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Interleucinas/genética , Intoxicación por MPTP , Animales , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Intoxicación por MPTP/metabolismo , Ratones Transgénicos , Sustancia Negra/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...