Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 129: 155511, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38723523

RESUMEN

BACKGROUND: Mitochondrial dysfunction associated with mitochondrial DNA mutations, enzyme defects, generation of ROS, and altered oxidative homeostasis is known to induce oral carcinogenesis during exposure to arecoline. Butein, a natural small molecule from Butea monosperma, possesses anti-inflammatory, anti-diabetic, and anti-cancer effects. However, the role of butein in the mitochondrial quality control mechanism has not been illuminated clearly. PURPOSE: This study aimed to explore the role of butein in preserving mitochondrial quality control during arecoline-induced mitochondrial dysfunction in oral cancer to curtail the early onset of carcinogenesis. METHODS: Cell viability was evaluated by MTT assay. The relative protein expressions were determined by western blotting. Immunofluorescence and confocal imaging were used to analyze the relative fluorescence and co-localization of proteins. Respective siRNAs were used to examine the knockdown-based studies. RESULTS: Butein, in the presence of arecoline, significantly caused a decrease in mitochondrial hyperpolarization and ROS levels in oral cancer cells. Mechanistically, we found an increase in COXIV, TOM20, and PGC1α expression during butein treatment, and inhibition of PGC1α blunted mitochondrial biogenesis and decreased the mitochondrial pool. Moreover, the fission protein MTP18, and its molecular partners DRP1 and MFF were dose-dependently increased during butein treatment to maintain mitochondria mass. In addition, we also found increased expression of various mitophagy proteins, including PINK1, Parkin, and LC3 during butein treatment, suggesting the clearance of damaged mitochondria to maintain a healthy mitochondrial pool. Interestingly, butein increased the activity of SIRT1 to enhance the functional mitochondrial pool, and inhibition of SIRT1 found to reduce the mitochondrial levels, as evident from the decrease in the expression of PGC1α and MTP18 in oral cancer cells. CONCLUSION: Our study proved that SIRT1 maintains a functional mitochondrial pool through PGC1α and MTP18 for biogenesis and fission of mitochondria during arecoline exposure and could decrease the risk of mitochondria dysfunctionality associated with the onset of oral carcinogenesis.


Asunto(s)
Arecolina , Chalconas , Mitocondrias , Neoplasias de la Boca , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Especies Reactivas de Oxígeno , Sirtuina 1 , Humanos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Arecolina/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Chalconas/farmacología , Sirtuina 1/metabolismo , Supervivencia Celular/efectos de los fármacos
2.
Cancer Lett ; 590: 216843, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579893

RESUMEN

Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.


Asunto(s)
Autofagia , Senescencia Celular , Neoplasias , Células Madre Neoplásicas , Poliploidía , Humanos , Senescencia Celular/efectos de los fármacos , Neoplasias/patología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Animales , Transición Epitelial-Mesenquimal
3.
Phytomedicine ; 123: 155157, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951147

RESUMEN

BACKGROUND: Bacopa monnieri (BM) is traditionally used in human diseases for its antioxidant, anti-inflammatory and neuroprotective effects. However, its anticancer potential has been poorly understood. AIM: The aim of this study was to explore the detailed anticancer mechanism of BM against oral cancer and to identify the bioactive BM fraction for possible cancer therapeutics. RESULTS: We performed bioactivity-guided fractionation and identified that the aqueous fraction of the ethanolic extract of BM (BM-AF) had a potent anticancer potential in both in vitro and in vivo oral cancer models. BM-AF inhibited cell viability, colony formation, cell migration and induced apoptotic cell death in Cal33 and FaDu cells. BM-AF at low doses promoted mitophagy and BM-AF mediated mitophagy was PARKIN dependent. In addition, BM-AF inhibited arecoline induced reactive oxygen species production in Cal33 cells. Moreover, BM-AF supressed arecoline-induced NLR family pyrin domain containing 3 (NLRP3) inflammasome activation through mitophagy in Cal33 cells. The in vivo antitumor effect of BM-AF was further validated in C57BL/6J mice through a 4-nitroquinolin-1-oxide and arecoline-induced oral cancer model. The tumor incidence was significantly reduced in the BM-AF treated group. Further, data obtained from western blot and immunohistochemistry analysis showed increased expression of apoptotic markers and decreased expression of inflammasome markers in the tongue tissue obtained from BM-AF treated mice in comparison with the non-treated tumor bearing mice. CONCLUSION: In conclusion, BM-AF exhibited potent anticancer activity through apoptosis induction and mitophagy-dependent inhibition of NLRP3 inflammasome activation in both in vitro and in vivo oral cancer models. Moreover, we have investigated apoptosis and mitophagy-inducing compounds from this plant extract having anticancer activity against oral cancer cells.


Asunto(s)
Bacopa , Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Ratones , Humanos , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Mitofagia , Bacopa/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello , Arecolina/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Ratones Endogámicos C57BL , Apoptosis , Especies Reactivas de Oxígeno/metabolismo
4.
Toxicol In Vitro ; 88: 105561, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36702439

RESUMEN

Aberrant expression of various genes is associated with the progression of oral squamous cell carcinoma. Stonin 2, an endocytic protein, has a prominent role in clathrin-associated endocytosis. Its position in oral cancer is still unknown. Here, we report that STON2 expression increases with an increase in the grade of the oral cancer tissue. Further, STON2 overexpressed cells possess a higher rate of proliferation and migraton in oral cancer cells. STON2 helps maintain lysosomal functions by preserving the lysosomal membrane integrity. It activates the Akt-mTOR axis and retains the mTOR on the membrane of the lysosomes. Further, we have identified an inhibitor of STON2, i.e., Trifluoperazine dihydrochloride (TFP), which targets the lysosomal axis by disrupting the Akt-mTOR pathway and causes lysosomal membrane permeabilization. Intererstingly, TFP shows a decrease in cell vaibility on the oral cancer cells and it was observed that cell viability is restored in TFP-treated STON2 overexpressed cells. Moreover, the lysosomal activity and the Akt-mTOR expression are restored in STON2 overexpressed cells co-treated with TFP, establishing TFP targets STON2 to showcase its anti-cancer effects in oral cancer. In conclusion, STON2 might serve as a potential biomarker in oral cancer, and its inhibition could functions as a novel anti-cancer mechanims against oral cancer.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Humanos , Supervivencia Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Carcinoma de Células Escamosas/metabolismo , Neoplasias de la Boca/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Lisosomas , Línea Celular Tumoral , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo
5.
Adv Protein Chem Struct Biol ; 133: 159-180, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36707200

RESUMEN

Autophagy, a classical cellular degradative catabolic process, also involves a functionally discrete non-degradative role in eukaryotic cells. It imparts critical regulatory function on conventional and unconventional protein secretion (degradative and secretory autophagy with distinct lysosomal degradation and extracellular expulsion, respectively) pathways. The N-amino terminal leader sequence containing proteins follows a conventional secretion pathway, while the leader-less proteins opt for secretory autophagy. The secretory autophagic process ensembles core autophagy machinery proteins, specifically ULK1/2, Beclin 1, LC3, and GABARAP, in coordination with Golgi re-assembly and stacking proteins (GRASPs). The secretory omegasomes fuse with the plasma membrane for the expulsion of cytosolic cargos to the extracellular environment. Alternatively, the secretory omegasomes also fuse with multi-vesicular bodies (MVBs) and harmonize ESCRTs (Complex I; TSG101) and Rab GTPase for their release to extracellular space. Autophagy has been associated with the secretion of diverse proteins involved in cellular signaling, inflammation, and carcinogenesis. Secreted proteins play an essential role in cancer by sustaining cell proliferation, inhibiting apoptosis, enhancing angiogenesis and metastasis, immune cell regulation, modulation of cellular energy metabolism, and resistance to anticancer drugs. The complexity of autophagy regulation during tumorigenesis is dependent on protein secretion pathways. Autophagy-regulated TOR-autophagy spatial coupling compartment complex energizes enhanced secretion of pro-inflammatory cytokines and leaderless proteins such as HMGB1. In conclusion, the chapter reviews the role of autophagy in regulating conventional and unconventional protein secretion pathways and its possible role in cancer.


Asunto(s)
Autofagia , Neoplasias , Humanos , Vías Secretoras , Lisosomas/metabolismo , Membrana Celular/metabolismo , Proteínas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo
6.
Biochim Biophys Acta Mol Basis Dis ; 1868(11): 166517, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35940381

RESUMEN

BACKGROUND: Concurrent viral infections insist on dysregulated epigenetics of tumor suppressor genes (TSGs), cell cycle regulators, apoptosis, and autophagy-associated genes to manifest oral carcinogenesis. Autophagy has been projected as a strategic defense signaling cascade against viral entry and subsequent oral carcinogenesis. Compromised autophagy signaling during viral infection fuels oral cancer initiation and progression. SCOPE OF REVIEW: The aberrant expression of autophagy genes and their encoded proteins is catalyzed by the dysregulated epigenome, legitimate epigenomic mutations, and post-transcriptional modifications such as hypermethylation, deacetylation of histone and non-histone targets, and hyperacetylation of histones that drive malignant transformation during oral carcinogenesis. Recent investigations have predicted epi-drugs (intriguingly methylation and deacetylation inhibitors and activators) as next-generation oral cancer therapeutic agents with a special notation for autophagy regulation. MAJOR CONCLUSIONS: This review focuses on the epigenetic mediated post-transcriptional modulation of autophagy genes during viral manifested oral carcinogenesis with a distinctive perception of autophagy-modulating epi-drugs in oral cancer therapeutics.


Asunto(s)
Epigenómica , Neoplasias de la Boca , Autofagia/genética , Carcinogénesis/genética , Epigénesis Genética , Histonas/metabolismo , Humanos , Neoplasias de la Boca/genética
7.
Curr Drug Targets ; 23(13): 1252-1260, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35975849

RESUMEN

Homeopathy is a widely practiced alternate system of medicine around the world that employs small doses of various medicines to promote auto-regulation and self-healing. It is among the most commonly used alternative approaches in cancer and other diseases and alternative therapeutic systems. It is widely used as palliative and as supportive therapy in cancer patients. Few cases have been reported on patients using homeopathy after surgery, radiotherapy, and chemotherapy, generally for overcoming side effects. The dose of Homoeopathic medicines and their mechanism of action in cancer has also been documented, while clinical trials on the effects of Homoeopathy in cancer treatment are rare. It is found that the anticancer potential of homeopathic medicines is reported for different cancer types, which show their efficacy through apoptosis and immune system modulation. Homeopathic treatment is an add-on to conventional therapy, with almost no interaction with the conventional drugs due to the small dose, and is largely attributed to improving lives by providing symptomatic relief, increasing survival time and boosting patient immunity. This review explores the accountability of the homeopathic system of medicine by highlighting some of the most commonly used homeopathic drugs for different types of cancers.


Asunto(s)
Homeopatía , Neoplasias , Humanos , Neoplasias/terapia
8.
Free Radic Biol Med ; 190: 307-319, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35985563

RESUMEN

Although stress-induced mitochondrial hyperfusion (SIMH) exerts a protective role in aiding cell survival, in the absence of mitochondrial fission, SIMH drives oxidative stress-related induction of apoptosis. In this study, our data showed that MTP18, a mitochondrial fission-promoting protein expression, was increased in oral cancer. We have screened and identified S28, a novel inhibitor of MTP18, which was found to induce SIMH and subsequently trigger apoptosis. Interestingly, it inhibited MTP18-mediated mitochondrial fission, as shown by a decrease in p-Drp1 along with increased Mfn1 expression in oral cancer cells. Moreover, S28 induced autophagy but not mitophagy due to the trouble in engulfment of hypoperfused mitochondria. Interestingly, S28-mediated SIMH resulted in the loss of mitochondrial membrane potential, leading to the consequent generation of mitochondrial superoxide to induce intrinsic apoptosis. Mechanistically, S28-induced mitochondrial superoxide caused lysosomal membrane permeabilization (LMP), resulting in decreased lysosomal pH, which impaired autophagosome-lysosome fusion. In this setting, it showed that overexpression of MTP18 resulted in mitochondrial fission leading to mitophagy and inhibition of superoxide-mediated LMP and apoptosis. Further, S28, in combination with FDA-approved anticancer drugs, exhibited higher apoptotic activity and decreased cell viability, suggesting the MTP18 inhibition combined with the anticancer drug could have greater efficacy against cancer.


Asunto(s)
Dinámicas Mitocondriales , Neoplasias de la Boca , Apoptosis/fisiología , Humanos , Lisosomas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
9.
Biochim Biophys Acta Mol Basis Dis ; 1868(9): 166428, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533906

RESUMEN

Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown. Here, we report procaine inhibited DNA methylation by suppressing DNMT activity and increased the expression of PAX9, a differentiation gene in OSCC cells. Interestingly, the reactivation of PAX9 by procaine found to inhibit cell growth and trigger apoptosis in OSCC in vitro and in vivo. Likely, the enhanced PAX9 expression after exposure to procaine controls stemness and differentiation through the autophagy-dependent pathway in OSCC cells. PAX9 inhibition abrogated procaine-induced apoptosis, autophagy, and inhibition of stemness. In OSCC cells, procaine improved anticancer drug sensitivity through PAX9, and its deficiency significantly blunted the anticancer drug sensitivity mediated by procaine. Additionally, NRF2 activation by procaine facilitated the antitumor response of PAX9, and pharmacological inhibition of NRF2 by ML385 reduced death and prevented the decrease in the orosphere-forming potential of OSCC cells. Furthermore, procaine promoted antitumor activity in FaDu xenografts in athymic nude mice, and immunohistochemistry data showed that PAX9 expression was significantly enhanced in the procaine group compared to the vehicle control. In conclusion, PAX9 reactivation in response to DNMT inhibition could trigger a potent antitumor mechanism to provide a new therapeutic strategy for OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , ADN , Humanos , Metiltransferasas , Ratones , Ratones Desnudos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Factor 2 Relacionado con NF-E2 , Factor de Transcripción PAX9/genética , Factor de Transcripción PAX9/metabolismo , Procaína/uso terapéutico , Carcinoma de Células Escamosas de Cabeza y Cuello
10.
Stem Cells ; 40(5): 468-478, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35294968

RESUMEN

Stem cell therapies have emerged as a promising treatment strategy for various diseases characterized by ischemic injury such as ischemic stroke. Cell survival after transplantation remains a critical issue. We investigated the impact of oxidative stress, being typically present in ischemically challenged tissue, on human dental pulp stem cells (hDPSC) and human mesenchymal stem cells (hMSC). We used oxygen-glucose deprivation (OGD) to induce oxidative stress in hDPSC and hMSC. OGD-induced generation of O2•- or H2O2 enhanced autophagy by inducing the expression of activating molecule in BECN1-regulated autophagy protein 1 (Ambra1) and Beclin1 in both cell types. However, hDPSC and hMSC pre-conditioning using reactive oxygen species (ROS) scavengers significantly repressed the expression of Ambra1 and Beclin1 and inactivated autophagy. O2•- or H2O2 acted upstream of autophagy, and the mechanism was unidirectional. Furthermore, our findings revealed ROS-p38-Erk1/2 involvement. Pre-treatment with selective inhibitors of p38 and Erk1/2 pathways (SB202190 and PD98059) reversed OGD effects on the expression of Ambra1 and Beclin1, suggesting that these pathways induced oxidative stress-mediated autophagy. SIRT3 depletion was found to be associated with increased oxidative stress and activation of p38 and Erk1/2 MAPKs pathways. Global ROS inhibition by NAC or a combination of polyethylene glycol-superoxide dismutase (PEG-SOD) and polyethylene glycol-catalase (PEG-catalase) further confirmed that O2•- or H2O2 or a combination of both impacts stems cell viability by inducing autophagy. Furthermore, autophagy inhibition by 3-methyladenine (3-MA) significantly improved hDPSC viability. These findings contribute to a better understanding of post-transplantation hDPSC and hMSC death and may deduce strategies to minimize therapeutic cell loss under oxidative stress.


Asunto(s)
Autofagia , Peróxido de Hidrógeno , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Apoptosis , Beclina-1/metabolismo , Beclina-1/farmacología , Supervivencia Celular , Glucosa/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo , Oxígeno/farmacología , Especies Reactivas de Oxígeno/metabolismo , Células Madre/metabolismo
12.
Br J Pharmacol ; 179(22): 5015-5035, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-33527371

RESUMEN

Despite the potential of cancer medicine, cancer stem cells (CSCs) associated with chemoresistance and disease recurrence are the significant challenges currently opposing the efficacy of available cancer treatment options. Mitochondrial dynamics involving the fission-fusion cycle and mitophagy are the major contributing factors to better adaptation, enabling CSCs to survive and grow better under tumour micro-environment-associated stress. Moreover, mitophagy is balanced with mitochondrial biogenesis to maintain mitochondrial homeostasis in CSCs, which are necessary for the growth and maintenance of CSCs and regulate metabolic switching from glycolysis to oxidative phosphorylation. In this review, we discuss different aspects of mitochondrial dynamics, mitophagy, and mitochondrial homeostasis and their effects on modulating CSCs behaviour during cancer development. Moreover, the efficacy of pharmacological targeting of these cellular processes using anti-CSC drugs in combination with currently available chemotherapeutic drugs improves the patient's survival of aggressive cancer types.


Asunto(s)
Mitofagia , Neoplasias , Homeostasis , Humanos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Neoplasias/metabolismo , Células Madre Neoplásicas , Microambiente Tumoral
13.
Semin Cancer Biol ; 83: 399-412, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-33039557

RESUMEN

Tumour-promoting inflammation is a critical hallmark in cancer development, and inflammasomes are well-known regulators of inflammatory processes within the tumour microenvironment. Different inflammasome components along with the adaptor, apoptosis-associated speck-like protein containing caspase activation and recruitment domain (ASC), and the effector, caspase-1, have a significant influence on tumorigenesis but in a tissue-specific and stage-dependent manner. The downstream products of inflammasome activation, that is the proinflammatory cytokines such as IL-1ß and IL-18, regulate tissue homeostasis and induce antitumour immune responses, but in contrast, they can also favour cancer growth and proliferation by directing various oncogenic signalling pathways in cancer cells. Moreover, different epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNAs, control inflammasomes and their components by regulating gene expression during cancer progression. Furthermore, autophagy, a master controller of cellular homeostasis, targets inflammasome-induced carcinogenesis by maintaining cellular homeostasis and removing potential cancer risk factors that promote inflammasome activation in support of tumorigenesis. Here, in this review, we summarize the effect of inflammasome activation in cancers and discuss the role of epigenetic and autophagic regulatory mechanisms in controlling inflammasomes. A proper understanding of the interactions among these key processes will be useful for developing novel therapeutic regimens for targeting inflammasomes in cancer.


Asunto(s)
Inflamasomas , Neoplasias , Autofagia/genética , Carcinogénesis/genética , Epigénesis Genética , Humanos , Inflamasomas/genética , Inflamasomas/metabolismo , Neoplasias/genética , Microambiente Tumoral/genética
14.
Semin Cancer Biol ; 85: 196-208, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34500075

RESUMEN

Autophagy, a lysosomal catabolic process, involves degradation of cellular materials, protein aggregate, and dysfunctional organelles to maintain cellular homeostasis. Strikingly, autophagy exhibits a dual-sided role in cancer; on the one hand, it promotes clearance of transformed cells and inhibits tumorigenesis, while cytoprotective autophagy has a role in sustaining cancer. The autophagy signaling in the tumor microenvironment (TME) during cancer growth and therapy is not adequately understood. The review highlights the role of autophagy signaling pathways to support cancer growth and progression in adaptation to the oxidative and hypoxic context of TME. Furthermore, autophagy contributes to regulating the metabolic switch for generating sufficient levels of high-energy metabolites, including amino acids, ketones, glutamine, and free fatty acids for cancer cell survival. Interestingly, autophagy has a critical role in modulating the tumor-associated fibroblast resulting in different cytokines and paracrine signaling mediated angiogenesis and invasion of pre-metastatic niches to secondary tumor sites. Moreover, autophagy promotes immune evasion to inhibit antitumor immunity, and autophagy inhibitors enhance response to immunotherapy with infiltration of immune cells to the TME niche. Furthermore, autophagy in TME maintains and supports the survival of cancer stem cells resulting in chemoresistance and therapy recurrence. Presently, drug repurposing has enabled the use of lysosomal inhibitor-based antimalarial drugs like chloroquine and hydroxychloroquine as clinically available autophagy inhibitors in cancer therapy. We focus on the recent developments of multiple autophagy modulators from pre-clinical trials and the challenges in developing autophagy-based cancer therapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Humanos , Autofagia , Neoplasias/patología , Transducción de Señal , Neovascularización Patológica/metabolismo
15.
J Nutr Biochem ; 99: 108841, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34403722

RESUMEN

Vitamin D regulates the pleiotropic effect to maintain cellular homeostasis and epidemiological evidence establishes an association between vitamin D deficiency and various human diseases. Here, the role of autophagy, the cellular self-degradation process, in vitamin D-dependent function is documented in different cellular settings and discussed the molecular aspects for treating chronic inflammatory, infectious diseases, and cancer. Vitamin D activates autophagy through a genomic and non-genomic signaling pathway to influence a wide variety of physiological functions of different body organs along with bone health and calcium metabolism. Moreover, it induces autophagy as a protective mechanism to inhibit oxidative stress and apoptosis to regulate cell proliferation, differentiation, and immune modulation. Furthermore, vitamin D and its receptor regulate autophagy signaling to control inflammation and host immunity by activating antimicrobial defense mechanisms. Vitamin D has been revealed as a potent anticancer agent and induces autophagy to increase the response to radiation and chemotherapeutic drugs for potential cancer therapy. Increasing vitamin D levels in the human body through timely exposure to sunlight or vitamin D supplements could activate autophagy as part of the homeostasis mechanism to prevent multiple human diseases and aging-associated dysfunctions.


Asunto(s)
Autofagia/efectos de los fármacos , Neoplasias/fisiopatología , Deficiencia de Vitamina D/fisiopatología , Vitamina D/administración & dosificación , Animales , Suplementos Dietéticos/análisis , Humanos , Neoplasias/tratamiento farmacológico , Deficiencia de Vitamina D/tratamiento farmacológico
16.
Stem Cell Rev Rep ; 18(1): 198-213, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34355273

RESUMEN

Cancer stem cells (CSCs) are rare populations of malignant cells with stem cell-like features of self-renewal, uninterrupted differentiation, tumorigenicity, and resistance to conventional therapeutic agents, and these cells have a decisive role in treatment failure and tumor relapse. The self-renewal potential of CSCs with atypical activation of developmental signaling pathways involves the maintenance of stemness to support cancer progression. The acquisition of stemness in CSCs has been accomplished through genetic and epigenetic rewiring following the metabolic switch. In this context, "metabostemness" denotes the metabolic parameters that essentially govern the epitranscriptional gene reprogramming mechanism to dedifferentiate tumor cells into CSCs. Several metabolites often referred to as oncometabolites can directly remodel chromatin structure and thereby influence the operation of epitranscriptional circuits. This integrated metaboloepigenetic dimension of CSCs favors the differentiated cells to move in dedifferentiated macrostates. Some metabolic events might perform as early drivers of epitranscriptional reprogramming; however, subsequent metabolic hits may govern the retention of stemness properties in the tumor mass. Interestingly, selective removal of mitochondria through autophagy can promote metabolic plasticity and alter metabolic states during differentiation and dedifferentiation. In this connection, novel metabostemness-specific drugs can be generated as potential cancer therapeutics to target the metaboloepigenetic circuitry to eliminate CSCs.


Asunto(s)
Mitofagia , Neoplasias , Diferenciación Celular/fisiología , Humanos , Mitocondrias/metabolismo , Mitofagia/genética , Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo
17.
Cell Mol Life Sci ; 78(23): 7435-7449, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34716768

RESUMEN

Lysosomes are single membrane-bound organelles containing acid hydrolases responsible for the degradation of cellular cargo and maintenance of cellular homeostasis. Lysosomes could originate from pre-existing endolysosomes or autolysosomes, acting as a critical juncture between autophagy and endocytosis. Stress that triggers lysosomal membrane permeabilization can be altered by ESCRT complexes; however, irreparable damage to the membrane results in the induction of a selective lysosomal degradation pathway, specifically lysophagy. Lysosomes play an indispensable role in different types of autophagy, including microautophagy, macroautophagy, and chaperone-mediated autophagy, and various cell death pathways such as lysosomal cell death, apoptotic cell death, and autophagic cell death. In this review, we discuss lysosomal reformation, maintenance, and degradation pathways following the involvement of the lysosome in autophagy and cell death, which are related to several pathophysiological conditions observed in humans.


Asunto(s)
Apoptosis/inmunología , Autofagia/inmunología , Endocitosis/inmunología , Lisosomas/inmunología , Envejecimiento/patología , Animales , Membrana Celular/metabolismo , Humanos , Membranas Intracelulares/metabolismo
18.
Stem Cell Rev Rep ; 17(6): 2347-2358, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34487308

RESUMEN

Stem cell therapies are becoming increasingly popular solutions for neurological disorders. However, there is a lower survival rate of these cells after transplantation. Oxidative stress is linked to brain damage, and it may also impact transplanted stem cells. To better understand how transplanted cells respond to oxidative stress, the current study used H2O2. We briefly illustrated that exogenous H2O2 treatment exaggerated oxidative stress in the human dental pulp and mesenchymal stem cells. 2',7'-Dichlorofluorescin diacetate (DCFDA), MitoSOX confirms the reactive oxygen species (ROS) involvement, which was remarkably subsided by the ROS inhibitors. The findings showed that H2O2 activates autophagy by enhancing pro-autophagic proteins, Beclin1 and Atg7. Increased LC3II/I expression (which co-localized with lysosomal proteins, LAMP1 and Cathepsin B) showed that H2O2 treatment promoted autophagolysosome formation. In the results, both Beclin1 and Atg7 were observed co-localized in mitochondria, indicating their involvement in mitophagy. The evaluation of Erk1/2 in the presence and absence of Na-Pyruvate, PEG-Catalase, and PD98059 established ROS-Erk1/2 participation in autophagy regulation. Further, these findings showed a link between apoptosis and autophagy. The results conclude that H2O2 acts as a stressor, promoting autophagy and mitophagy in stem cells under oxidative stress. The current study may help understand better cell survival and death approaches for transplanted cells in various neurological diseases. The current study uses human Dental Pulp and Mesenchymal Stem cells to demonstrate the importance of H2O2-driven autophagy in deciding the fate of these cells in an oxidative microenvironment. To summarise, we discovered that exogenous H2O2 treatment causes oxidative stress. Exogenous H2O2  treatment also increased ROS production, especially intracellular H2O2. H2O2 stimulated the ErK1/2 signaling pathway and autophagy. Erk1/2 was found to cause autophagy. Further, the function of mitophagy appeared to be an important factor in the H2O2-induced regulation of these two human stem cell types. In a nutshell, by engaging in autophagy nucleation, maturation, and terminal phase proteins, we elucidated the participation of autophagy in cell dysfunction and death.


Asunto(s)
Peróxido de Hidrógeno , Células Madre Mesenquimatosas , Autofagia , Humanos , Peróxido de Hidrógeno/farmacología , Estrés Oxidativo/fisiología , Transducción de Señal
19.
Phytomedicine ; 90: 153554, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34371479

RESUMEN

BACKGROUND: Epidemiological studies has revealed that a diet rich in fruits and vegetables could lower the risk of certain cancers. In this setting, natural polyphenols are potent anticancer bioactive compounds to overcome the non-target specificity, undesirable cytotoxicity and high cost of treatment cancer chemotherapy. PURPOSE: The review focuses on diverse classifications of the chemical diversity of dietary polyphenol and their molecular targets, modes of action, as well as preclinical and clinical applications in cancer prevention. RESULTS: The dietary polyphenols exhibit chemo-preventive activity through modulation of apoptosis, autophagy, cell cycle progression, inflammation, invasion and metastasis. Polyphenols possess strong antioxidant activity and control multiple molecular events through activation of tumor suppressor genes and inhibition of oncogenes involved in carcinogenesis. Numerous in vitro and in vivo studies have evidenced that these dietary phytochemicals regulate critical molecular targets and pathways to limit cancer initiation and progression. Moreover, natural polyphenols act synergistically with existing clinically approved drugs. The improved anticancer activity of combinations of polyphenols and anticancer drugs represents a promising perspective for clinical applications against many human cancers. CONCLUSION: The anticancer properties exhibited by dietary polyphenols are mainly attributed to their anti-metastatic, anti-proliferative, anti-angiogenic, anti-inflammatory, cell cycle arrest, apoptotic and autophagic effects. Hence, regular consumption of dietary polyphenols as food or food additives or adjuvants can be a promising tactic to preclude adjournment or cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Polifenoles , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Quimioprevención , Dieta , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Polifenoles/farmacología , Polifenoles/uso terapéutico
20.
Biotechnol Rep (Amst) ; 30: e00633, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34094892

RESUMEN

Despite the advancement in prognosis, diagnosis and treatment, cancer has emerged as the second leading cause of disease-associated death across the globe. With the remarkable application of synthetic drugs in cancer therapy and the onset of therapy-associated adverse effects, dietary phytochemicals have been materialized as potent anti-cancer drugs owing to their antioxidant, apoptosis and autophagy modulating activities. With dynamic regulation of apoptosis and autophagy in association with cell cycle regulation, inhibition in cellular proliferation, invasion and migration, dietary phytochemicals have emerged as potent anti-cancer pharmacophores. Dietary phytochemicals or their synthetic analogous as individual drug candidates or in combination with FDA approved chemotherapeutic drugs have exhibited potent anti-cancer efficacy. With the advancement in cancer therapeutics, dietary phytochemicals hold high prevalence for their use as precision and personalized medicine to replace conventional chemotherapeutic drugs. Hence, keeping these perspectives in mind, this review focuses on the diversity of dietary phytochemicals and their molecular mechanism of action in several cancer subtypes and tumor entities. Understanding the possible molecular key players involved, the use of dietary phytochemicals will thrive a new horizon in cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...