Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 17(10)2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-28937588

RESUMEN

The CMOS (Complementary Metal-Oxide-Semiconductor) is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze), causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF) framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

2.
ScientificWorldJournal ; 2014: 651986, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25215327

RESUMEN

The single image dehazing algorithms in existence can only satisfy the demand for dehazing efficiency, not for denoising. In order to solve the problem, a Bayesian framework for single image dehazing considering noise is proposed. Firstly, the Bayesian framework is transformed to meet the dehazing algorithm. Then, the probability density function of the improved atmospheric scattering model is estimated by using the statistical prior and objective assumption of degraded image. Finally, the reflectance image is achieved by an iterative approach with feedback to reach the balance between dehazing and denoising. Experimental results demonstrate that the proposed method can remove haze and noise simultaneously and effectively.


Asunto(s)
Algoritmos , Teorema de Bayes , Procesamiento de Imagen Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA