Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Am Chem Soc ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017374

RESUMEN

Glioblastoma (GBM) is the most prevalent and aggressive primary central nervous system (CNS) malignancy. YM155 is a highly potent broad-spectrum anti-cancer drug that was derived from a phenotypic screen for functional inhibitors of survivin expression, but for which the relevant biomolecular target remains unknown. Presumably as a result of its lack of cell-type selectivity, YM155 has suffered from tolerability issues in the clinic. Based on its structural similarity to the GBM-selective prodrug RIPGBM, here, we report the design, synthesis, and characterization of a prodrug form of YM155, termed aYM155. aYM155 displays potent cell killing activity against a broad panel of patient-derived GBM cancer stem-like cells (IC50 = 0.7-10 nM), as well as EGFR-amplified and EGFR variant III-expressing (EGFRvIII) cell lines (IC50 = 3.8-36 nM), and becomes activated in a cell-type-dependent manner. Mass spectrometry-based analysis indicates that enhanced cell-type selectivity results from relative rates of prodrug activation in transformed versus non-transformed cell types. The prodrug strategy also facilitates transport into the brain (brain-to-plasma ratio, aYM155 = 0.56; YM155 = BLQ). In addition, we determine that the survivin-suppressing and apoptosis-inducing activities of YM155 involve its interaction with receptor-interacting protein kinase 2 (RIPK2). In an orthotopic intracranial GBM xenograft model, aYM155 prodrug significantly inhibits brain tumor growth in vivo, which correlates with cell-type selective survivin-based pharmacodynamic effects.

2.
RSC Adv ; 12(41): 26733-26743, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36320847

RESUMEN

Graphene oxide (GO) shows a remarkable reinforcing effect in the application of cement composite engineering while it also harms the workability of fresh cement slurry. Hydroxylated graphene (HO-G) can effectively avoid the severe adverse effects on the fluidity of cement slurry as happened in the case of GO, but the enhancement of the flexural strength of cement composites is not as good as that of GO. As such, considering the advantages and disadvantages of these two nanomaterials in cement-based composite applications, this study investigated the effect of hybrid GO/HO-G with various ratios on the macro-properties and microstructure of cement composites in comparison with that of individual GO and HO-G. The results revealed a better synergistic improvement on the strength and durability of mortar by hybrid GO/HO-G in comparison with the individual effects of GO or HO-G. In particular, when 0.015 wt% GO and 0.015 wt% HO-G were combined as multiple-additives added into cement mortar, the improvement ratio of compressive strength and chloride migration resistance at 28 days were 40.2% and 21.9%, which were far better than those of the mortar containing a single additive (0.03 wt% GO or 0.03 wt% HO-G). Additionally, the hybrid GO/HO-G not only could greatly reduce the degrada-tion of the fluidity of mortar as happened in the case of GO, but also further reinforced the flexural strength of cement composites when compared with its HO-G counterpart. The combination of these two nanofillers as multiple-nanoadditives for cement reinforcement is quite promising due to their synergistic effect and possesses strong potential for reinforcing and functionalizing cement composites.

3.
Cell Rep ; 37(5): 109957, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34731610

RESUMEN

The highly lethal brain cancer glioblastoma (GBM) poses a daunting challenge because the blood-brain barrier renders potentially druggable amplified or mutated oncoproteins relatively inaccessible. Here, we identify sphingomyelin phosphodiesterase 1 (SMPD1), an enzyme that regulates the conversion of sphingomyelin to ceramide, as an actionable drug target in GBM. We show that the highly brain-penetrant antidepressant fluoxetine potently inhibits SMPD1 activity, killing GBMs, through inhibition of epidermal growth factor receptor (EGFR) signaling and via activation of lysosomal stress. Combining fluoxetine with temozolomide, a standard of care for GBM, causes massive increases in GBM cell death and complete tumor regression in mice. Incorporation of real-world evidence from electronic medical records from insurance databases reveals significantly increased survival in GBM patients treated with fluoxetine, which was not seen in patients treated with other selective serotonin reuptake inhibitor (SSRI) antidepressants. These results nominate the repurposing of fluoxetine as a potentially safe and promising therapy for patients with GBM and suggest prospective randomized clinical trials.


Asunto(s)
Antineoplásicos/farmacología , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Reposicionamiento de Medicamentos , Metabolismo Energético/efectos de los fármacos , Fluoxetina/farmacología , Glioblastoma/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Animales , Antineoplásicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Registros Electrónicos de Salud , Receptores ErbB/metabolismo , Femenino , Fluoxetina/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Ratones Desnudos , Permeabilidad , Estudios Retrospectivos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Esfingomielina Fosfodiesterasa/metabolismo , Esfingomielinas/metabolismo , Temozolomida/farmacología , Carga Tumoral/efectos de los fármacos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Rev Cancer ; 20(1): 57-70, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31806884

RESUMEN

Altered cellular metabolism is a hallmark of gliomas. Propelled by a set of recent technological advances, new insights into the molecular mechanisms underlying glioma metabolism are rapidly emerging. In this Review, we focus on the dynamic nature of glioma metabolism and how it is shaped by the interaction between tumour genotype and brain microenvironment. Recent advances integrating metabolomics with genomics are discussed, yielding new insight into the mechanisms that drive glioma pathogenesis. Studies that shed light on interactions between the tumour microenvironment and tumour genotype are highlighted, providing important clues as to how gliomas respond to and adapt to their changing tissue and biochemical contexts. Finally, a road map for the discovery of potential new glioma drug targets is suggested, with the goal of translating these new insights about glioma metabolism into clinical benefits for patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Metabolismo Energético , Glioma/metabolismo , Animales , Biomarcadores , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/etiología , Neoplasias Encefálicas/terapia , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Descubrimiento de Drogas , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Variación Genética , Glioma/diagnóstico , Glioma/etiología , Glioma/terapia , Humanos , Metabolómica/métodos , Terapia Molecular Dirigida , Transducción de Señal
5.
Cell Metab ; 30(2): 229-230, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-31390546

RESUMEN

Altered lipid metabolism is common in glioblastoma, but its role in tumorigenesis is not well understood. In this issue of Cell Metabolism, Duman et al. (2019) provide new insight into this process, demonstrating that acyl-CoA-binding protein (ACBP) drives glioblastoma growth by promoting mitochondrial long fatty acyl-CoA accumulation and ß-oxidation.


Asunto(s)
Inhibidor de la Unión a Diazepam , Glioblastoma , Acilcoenzima A , Carcinogénesis , Proteínas Portadoras , Ácidos Grasos , Humanos
6.
Cell Metab ; 30(3): 525-538.e8, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31303424

RESUMEN

Advances in DNA sequencing technologies have reshaped our understanding of the molecular basis of cancer, providing a precise genomic view of tumors. Complementary biochemical and biophysical perspectives of cancer point toward profound shifts in nutrient uptake and utilization that propel tumor growth and major changes in the structure of the plasma membrane of tumor cells. The molecular mechanisms that bridge these fundamental aspects of tumor biology remain poorly understood. Here, we show that the lysophosphatidylcholine acyltransferase LPCAT1 functionally links specific genetic alterations in cancer with aberrant metabolism and plasma membrane remodeling to drive tumor growth. Growth factor receptor-driven cancers are found to depend on LPCAT1 to shape plasma membrane composition through enhanced saturated phosphatidylcholine content that is, in turn, required for the transduction of oncogenic signals. These results point to a genotype-informed strategy that prioritizes lipid remodeling pathways as therapeutic targets for diverse cancers.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Amplificación de Genes , Neoplasias/genética , Neoplasias/metabolismo , Oncogenes/genética , Fosfolípidos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , Células A549 , Animales , Supervivencia Celular/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Genotipo , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Células PC-3 , Transducción de Señal/genética , Transfección
7.
Cancer Discov ; 9(9): 1248-1267, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31201181

RESUMEN

Glioblastoma ranks among the most aggressive and lethal of all human cancers. Functionally defined glioma stem cells (GSC) contribute to this poor prognosis by driving therapeutic resistance and maintaining cellular heterogeneity. To understand the molecular processes essential for GSC maintenance and tumorigenicity, we interrogated the superenhancer landscapes of primary glioblastoma specimens and in vitro GSCs. GSCs epigenetically upregulated ELOVL2, a key polyunsaturated fatty-acid synthesis enzyme. Targeting ELOVL2 inhibited glioblastoma cell growth and tumor initiation. ELOVL2 depletion altered cellular membrane phospholipid composition, disrupted membrane structural properties, and diminished EGFR signaling through control of fatty-acid elongation. In support of the translational potential of these findings, dual targeting of polyunsaturated fatty-acid synthesis and EGFR signaling had a combinatorial cytotoxic effect on GSCs. SIGNIFICANCE: Glioblastoma remains a devastating disease despite extensive characterization. We profiled epigenomic landscapes of glioblastoma to pinpoint cell state-specific dependencies and therapeutic vulnerabilities. GSCs utilize polyunsaturated fatty-acid synthesis to support membrane architecture, inhibition of which impairs EGFR signaling and GSC proliferation. Combinatorial targeting of these networks represents a promising therapeutic strategy.See related commentary by Affronti and Wellen, p. 1161.This article is highlighted in the In This Issue feature, p. 1143.


Asunto(s)
Neoplasias Encefálicas/patología , Elementos de Facilitación Genéticos , Elongasas de Ácidos Grasos/genética , Glioblastoma/patología , Células Madre Neoplásicas/metabolismo , Animales , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Epigénesis Genética , Receptores ErbB/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/metabolismo , Histonas/metabolismo , Humanos , Metilación , Factores de Transcripción SOXB1/metabolismo , Transducción de Señal , Regulación hacia Arriba
8.
Nature ; 569(7757): 570-575, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31019297

RESUMEN

Precision oncology hinges on linking tumour genotype with molecularly targeted drugs1; however, targeting the frequently dysregulated metabolic landscape of cancer has proven to be a major challenge2. Here we show that tissue context is the major determinant of dependence on the nicotinamide adenine dinucleotide (NAD) metabolic pathway in cancer. By analysing more than 7,000 tumours and 2,600 matched normal samples of 19 tissue types, coupled with mathematical modelling and extensive in vitro and in vivo analyses, we identify a simple and actionable set of 'rules'. If the rate-limiting enzyme of de novo NAD synthesis, NAPRT, is highly expressed in a normal tissue type, cancers that arise from that tissue will have a high frequency of NAPRT amplification and be completely and irreversibly dependent on NAPRT for survival. By contrast, tumours that arise from normal tissues that do not express NAPRT highly are entirely dependent on the NAD salvage pathway for survival. We identify the previously unknown enhancer that underlies this dependence. Amplification of NAPRT is shown to generate a pharmacologically actionable tumour cell dependence for survival. Dependence on another rate-limiting enzyme of the NAD synthesis pathway, NAMPT, as a result of enhancer remodelling is subject to resistance by NMRK1-dependent synthesis of NAD. These results identify a central role for tissue context in determining the choice of NAD biosynthetic pathway, explain the failure of NAMPT inhibitors, and pave the way for more effective treatments.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Amplificación de Genes , NAD/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Muerte Celular , Línea Celular Tumoral , Citocinas/antagonistas & inhibidores , Citocinas/genética , Citocinas/metabolismo , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Neoplasias/enzimología , Nicotinamida Fosforribosiltransferasa/antagonistas & inhibidores , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Pentosiltransferasa/genética , Pentosiltransferasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
9.
Biochim Biophys Acta Rev Cancer ; 1870(1): 76-87, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29775654

RESUMEN

Tumors cells reprogram their metabolism to fuel rapid growth. The ability to trace nutrient fluxes in the context of specific alterations has provided new mechanistic insight into the process of oncogenic transformation. A broad array of complementary genetic, epigenetic, transcriptional and translational mechanisms has been identified, revealing a metabolic landscape of cancer. However, cancer metabolism is not a static or uniform process, including within a single tumor. Tumor cells adapt to changing environmental conditions, profoundly shaping the enzymatic dependencies of individual cells. The underlying molecular mechanisms of adaptation, and the specific interactions between tumor genotype, oncogenic signaling, and tissue/biochemical context, remain incompletely understood. In this review, we examine dynamic aspects of how metabolic dependencies develop in cancer, shaped both by genotype and biochemical environment, and review how these interlaced processes generate targetable metabolic vulnerabilities. This article is part of a Special Issue entitled: Cancer Metabolism edited by Dr. Chi Van Dang.


Asunto(s)
Neoplasias/metabolismo , Amplificación de Genes , Genotipo , Humanos , Redes y Vías Metabólicas/genética , Mutación , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes , Fenotipo , Microambiente Tumoral
10.
Mol Cell ; 67(1): 128-138.e7, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28648777

RESUMEN

Mutations in cancer reprogram amino acid metabolism to drive tumor growth, but the molecular mechanisms are not well understood. Using an unbiased proteomic screen, we identified mTORC2 as a critical regulator of amino acid metabolism in cancer via phosphorylation of the cystine-glutamate antiporter xCT. mTORC2 phosphorylates serine 26 at the cytosolic N terminus of xCT, inhibiting its activity. Genetic inhibition of mTORC2, or pharmacologic inhibition of the mammalian target of rapamycin (mTOR) kinase, promotes glutamate secretion, cystine uptake, and incorporation into glutathione, linking growth factor receptor signaling with amino acid uptake and utilization. These results identify an unanticipated mechanism regulating amino acid metabolism in cancer, enabling tumor cells to adapt to changing environmental conditions.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/metabolismo , Neoplasias Encefálicas/enzimología , Cisteína/metabolismo , Glioblastoma/enzimología , Glutamina/metabolismo , Complejos Multiproteicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Células A549 , Sistema de Transporte de Aminoácidos y+/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioblastoma/genética , Glioblastoma/patología , Glutatión/biosíntesis , Células HEK293 , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/genética , Mutación , Fosforilación , Unión Proteica , Proteómica/métodos , Interferencia de ARN , Serina , Serina-Treonina Quinasas TOR/genética , Espectrometría de Masas en Tándem , Factores de Tiempo , Transfección , Microambiente Tumoral
11.
Cancer Cell ; 30(5): 683-693, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27746144

RESUMEN

Small-molecule inhibitors targeting growth factor receptors have failed to show efficacy for brain cancers, potentially due to their inability to achieve sufficient drug levels in the CNS. Targeting non-oncogene tumor co-dependencies provides an alternative approach, particularly if drugs with high brain penetration can be identified. Here we demonstrate that the highly lethal brain cancer glioblastoma (GBM) is remarkably dependent on cholesterol for survival, rendering these tumors sensitive to Liver X receptor (LXR) agonist-dependent cell death. We show that LXR-623, a clinically viable, highly brain-penetrant LXRα-partial/LXRß-full agonist selectively kills GBM cells in an LXRß- and cholesterol-dependent fashion, causing tumor regression and prolonged survival in mouse models. Thus, a metabolic co-dependency provides a pharmacological means to kill growth factor-activated cancers in the CNS.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Colesterol/metabolismo , Glioblastoma/tratamiento farmacológico , Indazoles/administración & dosificación , Receptores X del Hígado/metabolismo , Animales , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Glioblastoma/metabolismo , Humanos , Indazoles/farmacología , Ratones , Resultado del Tratamiento
12.
Cell Metab ; 19(5): 861-71, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24807223

RESUMEN

Adipose tissue is central to the regulation of lipid metabolism. Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), one of the most severe lipodystrophy diseases, is caused by mutation of the Seipin gene. Seipin plays an important role in adipocyte differentiation and lipid homeostasis, but its exact molecular functions are still unknown. Here, we show that Seipin physically interacts with the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) in both Drosophila and man. SERCA, an endoplasmic reticulum (ER) calcium pump, is solely responsible for transporting cytosolic calcium into the ER lumen. Like dSeipin, dSERCA cell-autonomously promotes lipid storage in Drosophila fat cells. dSeipin affects dSERCA activity and modulates intracellular calcium homeostasis. Adipose tissue-specific knockdown of the ER-to-cytosol calcium release channel ryanodine receptor (RyR) partially restores fat storage in dSeipin mutants. Our results reveal that Seipin promotes adipose tissue fat storage by regulating intracellular calcium homeostasis.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Metabolismo de los Lípidos/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Calcio/metabolismo , Línea Celular , Citoplasma/metabolismo , Drosophila/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Homeostasis/fisiología , Humanos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
13.
Cancer Biol Med ; 11(4): 255-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25610711

RESUMEN

Glioblastoma (GBM) is one of the most lethal human cancers. Genomic analyses define the molecular architecture of GBM and highlight a central function for mechanistic target of rapamycin (mTOR) signaling. mTOR kinase exists in two multi-protein complexes, namely, mTORC1 and mTORC2. These complexes differ in terms of function, regulation and rapamycin sensitivity. mTORC1 is well established as a cancer drug target, whereas the functions of mTORC2 in cancer, including GBM, remains poorly understood. This study reviews the recent findings that demonstrate a central function of mTORC2 in regulating tumor growth, metabolic reprogramming, and targeted therapy resistance in GBM, which makes mTORC2 as a critical GBM drug target.

14.
J Cell Sci ; 125(Pt 15): 3568-77, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22505614

RESUMEN

Lipid droplets are the main lipid storage sites in cells. Lipid droplet homeostasis is regulated by the surface accessibility of lipases. Mammalian adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) are two key lipases for basal and stimulated lipolysis, respectively. Perilipins, the best known lipid droplet surface proteins, can either recruit lipases or prevent the access of lipases to lipid droplets. Mammals have five perilipin proteins, which often exhibit redundant functions, precluding the analysis of the exact role of individual perilipins in vivo. Drosophila have only two perilipins, PLIN1/LSD-1 and PLIN2/LSD-2. Previous studies revealed that PLIN2 is important for protecting lipid droplets from lipolysis mediated by Brummer (BMM), the Drosophila homolog of ATGL. In this study, we report the functional analysis of PLIN1 and Drosophila HSL. Loss-of-function and overexpression studies reveal that unlike PLIN2, PLIN1 probably facilitates lipid mobilization. HSL is recruited from the cytosol to the surface of lipid droplets under starved conditions and PLIN1 is necessary for the starved induced lipid droplet localization of HSL. Moreover, phenotypic analysis of plin1;plin2 double mutants revealed that PLIN1 and PLIN2 might have redundant functions in protecting lipid droplets from lipolysis. Therefore, the two Drosophila perilipins have both opposite and redundant roles. Domain swapping and deletion analyses indicate that the C-terminal region of PLIN1 confers functional specificity to PLIN1. Our study highlights the complex roles of Drosophila perilipin proteins and the evolutionarily conserved regulation of HSL translocation by perilipins.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Metabolismo de los Lípidos/fisiología , Oxidorreductasas N-Desmetilantes/metabolismo , Animales , Drosophila/genética , Proteínas de Drosophila/genética , Oxidorreductasas N-Desmetilantes/genética , Transporte de Proteínas , Esterol Esterasa/genética , Esterol Esterasa/metabolismo
15.
PLoS Genet ; 7(4): e1001364, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21533227

RESUMEN

Obesity is characterized by accumulation of excess body fat, while lipodystrophy is characterized by loss or absence of body fat. Despite their opposite phenotypes, these two conditions both cause ectopic lipid storage in non-adipose tissues, leading to lipotoxicity, which has health-threatening consequences. The exact mechanisms underlying ectopic lipid storage remain elusive. Here we report the analysis of a Drosophila model of the most severe form of human lipodystrophy, Berardinelli-Seip Congenital Lipodystrophy 2, which is caused by mutations in the BSCL2/Seipin gene. In addition to reduced lipid storage in the fat body, dSeipin mutant flies accumulate ectopic lipid droplets in the salivary gland, a non-adipose tissue. This phenotype was suppressed by expressing dSeipin specifically within the salivary gland. dSeipin mutants display synergistic genetic interactions with lipogenic genes in the formation of ectopic lipid droplets. Our data suggest that dSeipin may participate in phosphatidic acid metabolism and subsequently down-regulate lipogenesis to prevent ectopic lipid droplet formation. In summary, we have demonstrated a tissue-autonomous role of dSeipin in ectopic lipid storage in lipodystrophy.


Asunto(s)
Drosophila/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Lípidos/análisis , Lipogénesis , Ácidos Fosfatidicos/metabolismo , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Drosophila/genética , Drosophila/crecimiento & desarrollo , Cuerpo Adiposo/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Vectores Genéticos , Larva/crecimiento & desarrollo , Larva/metabolismo , Lipodistrofia Generalizada Congénita/metabolismo , Lipodistrofia Generalizada Congénita/patología , Masculino , Mutación , Obesidad/genética , Obesidad/metabolismo , Fenotipo , Interferencia de ARN , Glándulas Salivales/metabolismo
16.
J Genet Genomics ; 38(1): 1-11, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21338947

RESUMEN

TRIpartite Motif (TRIM) family proteins are ring finger domain-containing, multi-domain proteins implicated in many biological processes. Members of the TRIM-9/C-I subfamily of TRIM proteins, including TRIM-9, MID1 and MID2, have neuronal functions and are associated with neurological diseases. To explore whether the functions of C-I TRIM proteins are conserved in invertebrates, we analyzed Caenorhabditis elegans and Drosophila trim-9 mutants. C. elegans trim-9 mutants exhibit defects in the ventral guidance of hermaphrodite specific neuron (HSN) and the touch neuron AVM. Further genetic analyses indicate that TRIM-9 participates in the UNC-6-UNC-40 attraction pathway. Asymmetric distribution of UNC-40 during HSN development is normal in trim-9 mutants. However, the asymmetric localization of MIG-10, a downstream effector of UNC-40, is abolished in trim-9 mutants. These results suggest that TRIM-9 functions upstream of MIG-10 in the UNC-40 pathway. Moreover, we showed that TRIM-9 exhibits E3 ubiquitin ligase activity in vitro and this activity is important for TRIM-9 function in vivo. Additionally, we found that Drosophila trim-9 is required for the midline attraction of a group of sensory neuron axons. Over-expression of the Netrin/UNC-6 receptor Frazzled suppresses the guidance defects in trim-9 mutants. Our study reveals an evolutionarily conserved function of TRIM-9 in the UNC-40/Frazzled-mediated UNC-6/Netrin attraction pathway.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Ubiquitina-Proteína Ligasas/metabolismo , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteínas de Drosophila , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Evolución Molecular , Organismos Hermafroditas/citología , Organismos Hermafroditas/genética , Organismos Hermafroditas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Datos de Secuencia Molecular , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Receptores de Netrina , Netrinas , Neuronas/metabolismo , Transporte de Proteínas , Dominios RING Finger , Receptores de Superficie Celular/metabolismo , Especificidad de la Especie , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...