Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Cell ; 59(8): 991-1009.e12, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38484732

RESUMEN

Sirtuins are pro-longevity genes with chromatin modulation potential, but how these properties are connected is not well understood. Here, we generated a panel of isogeneic human stem cell lines with SIRT1-SIRT7 knockouts and found that any sirtuin deficiency leads to accelerated cellular senescence. Through large-scale epigenomic analyses, we show how sirtuin deficiency alters genome organization and that genomic regions sensitive to sirtuin deficiency are preferentially enriched in active enhancers, thereby promoting interactions within topologically associated domains and the formation of de novo enhancer-promoter loops. In all sirtuin-deficient human stem cell lines, we found that chromatin contacts are rewired to promote aberrant activation of the placenta-specific gene PAPPA, which controls the pro-senescence effects associated with sirtuin deficiency and serves as a potential aging biomarker. Based on our survey of the 3D chromatin architecture, we established connections between sirtuins and potential target genes, thereby informing the development of strategies for aging interventions.


Asunto(s)
Senescencia Celular , Cromatina , Placenta , Sirtuinas , Humanos , Senescencia Celular/genética , Placenta/metabolismo , Sirtuinas/metabolismo , Sirtuinas/genética , Femenino , Embarazo , Cromatina/metabolismo , Cromatina/genética , Sirtuina 1/metabolismo , Sirtuina 1/genética , Regiones Promotoras Genéticas/genética , Línea Celular
2.
Nat Aging ; 3(6): 705-721, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37118553

RESUMEN

How N6-methyladenosine (m6A), the most abundant mRNA modification, contributes to primate tissue homeostasis and physiological aging remains elusive. Here, we characterize the m6A epitranscriptome across the liver, heart and skeletal muscle in young and old nonhuman primates. Our data reveal a positive correlation between m6A modifications and gene expression homeostasis across tissues as well as tissue-type-specific aging-associated m6A dynamics. Among these tissues, skeletal muscle is the most susceptible to m6A loss in aging and shows a reduction in the m6A methyltransferase METTL3. We further show that METTL3 deficiency in human pluripotent stem cell-derived myotubes leads to senescence and apoptosis, and identify NPNT as a key element downstream of METTL3 involved in myotube homeostasis, whose expression and m6A levels are both decreased in senescent myotubes. Our study provides a resource for elucidating m6A-mediated mechanisms of tissue aging and reveals a METTL3-m6A-NPNT axis counteracting aging-associated skeletal muscle degeneration.


Asunto(s)
Hígado , Primates , Animales , Humanos , Primates/genética , Envejecimiento/genética , Homeostasis/genética , Metiltransferasas/genética
3.
Dev Cell ; 57(11): 1347-1368.e12, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35613614

RESUMEN

Nuclear deformation, a hallmark frequently observed in senescent cells, is presumed to be associated with the erosion of chromatin organization at the nuclear periphery. However, how such gradual changes in higher-order genome organization impinge on local epigenetic modifications to drive cellular mechanisms of aging has remained enigmatic. Here, through large-scale epigenomic analyses of isogenic young, senescent, and progeroid human mesenchymal progenitor cells (hMPCs), we delineate a hierarchy of integrated structural state changes that manifest as heterochromatin loss in repressive compartments, euchromatin weakening in active compartments, switching in interfacing topological compartments, and increasing epigenetic entropy. We found that the epigenetic de-repression unlocks the expression of pregnancy-specific beta-1 glycoprotein (PSG) genes that exacerbate hMPC aging and serve as potential aging biomarkers. Our analyses provide a rich resource for uncovering the principles of epigenomic landscape organization and its changes in cellular aging and for identifying aging drivers and intervention targets with a genome-topology-based mechanism.


Asunto(s)
Senescencia Celular , Cromatina , Envejecimiento/genética , Senescencia Celular/genética , Cromatina/genética , Epigénesis Genética , Heterocromatina/genética , Humanos
5.
Nucleic Acids Res ; 49(8): 4203-4219, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33706382

RESUMEN

Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.


Asunto(s)
Envejecimiento/metabolismo , Heterocromatina/metabolismo , Sirtuina 3/fisiología , Envejecimiento/genética , Animales , Proteína 9 Asociada a CRISPR , Sistemas CRISPR-Cas , Células Cultivadas , Senescencia Celular/genética , Senescencia Celular/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Heterocromatina/genética , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Desnudos , Ratones SCID , Membrana Nuclear/metabolismo , Dominios Proteicos , Sirtuina 3/química , Sirtuina 3/genética
6.
Protein Cell ; 11(7): 483-504, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32504224

RESUMEN

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.


Asunto(s)
Senescencia Celular , Heterocromatina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Sirtuinas/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Ratones , Ratones Desnudos , Sirtuinas/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...