Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant J ; 102(1): 178-186, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31692131

RESUMEN

Chromosome painting is a powerful technique for chromosome and genome studies. We developed a flexible chromosome painting technique based on multiplex PCR of a synthetic oligonucleotide (oligo) library in cucumber (Cucumis sativus L., 2n = 14). Each oligo in the library was associated with a universal as well as nested specific primers for amplification, which allow the generation of different probes from the same oligo library. We were also able to generate double-stranded labelled oligos, which produced much stronger signals than single-stranded labelled oligos, by amplification using fluorophore-conjugated primer pairs. Oligos covering cucumber chromosome 1 (Chr1) and chromosome 4 (Chr4) consisting of eight segments were synthesized in one library. Different oligo probes generated from the library painted the corresponding chromosomes/segments unambiguously, especially on pachytene chromosomes. This technique was then applied to study the homoeologous relationships among cucumber, C. hystrix and C. melo chromosomes based on cross-species chromosome painting using Chr4 probes. We demonstrated that the probe was feasible to detect interspecies chromosome homoeologous relationships and chromosomal rearrangement events. Based on its advantages and great convenience, we anticipate that this flexible oligo-painting technique has great potential for the studies of the structure, organization, and evolution of chromosomes in any species with a sequenced genome.


Asunto(s)
Pintura Cromosómica/métodos , Cromosomas de las Plantas/genética , Cucumis sativus/genética , Genómica , Reacción en Cadena de la Polimerasa Multiplex , Oligonucleótidos/genética , Cucumis/genética , Biblioteca Genómica , Genómica/métodos , Oligonucleótidos/metabolismo
2.
BMC Plant Biol ; 19(1): 471, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31694540

RESUMEN

BACKGROUND: Meiosis of newly formed allopolyploids frequently encounter perturbations induced by the merging of divergent and hybridizable genomes. However, to date, the meiotic properties of allopolyploids with dysploid parental karyotypes have not been studied in detail. The allotetraploid Cucumis ×hytivus (HHCC, 2n = 38) was obtained from interspecific hybridization between C. sativus (CC, 2n = 14) and C. hystrix (HH, 2n = 24) followed by chromosome doubling. The results of this study thus offer an excellent opportunity to explore the meiotic properties of allopolyploids with dysploid parental karyotypes. RESULTS: In this report, we describe the meiotic properties of five chromosomes (C5, C7, H1, H9 and H10) and two genomes in interspecific hybrids and C. ×hytivus (the 4th and 14th inbred family) through oligo-painting and genomic in situ hybridization (GISH). We show that 1) only two translocations carrying C5-oligo signals were detected on the chromosomes C2 and C4 of one 14th individual by the karyotyping of eight 4th and 36 14th plants based on C5- and C7-oligo painting, and possible cytological evidence was observed in meiosis of the 4th generation; 2) individual chromosome have biases for homoeologous pairing and univalent formation in F1 hybrids and allotetraploids; 3) extensive H-chromosome autosyndetic pairings (e.g., H-H, 25.5% PMCs) were observed in interspecific F1 hybrid, whereas no C-chromosome autosyndetic pairings were observed (e.g. C-C); 4) the meiotic properties of two subgenomes have significant biases in allotetraploids: H-subgenome exhibits higher univalent and chromosome lagging frequencies than C-subgenome; and 5) increased meiotic stability in the S14 generation compared with the S4 generation, including synchronous meiosis behavior, reduced incidents of univalent and chromosome lagging. CONCLUSIONS: These results suggest that the meiotic behavior of two subgenomes has dramatic biases in response to interspecific hybridization and allopolyploidization, and the meiotic behavior harmony of subgenomes is a key subject of meiosis evolution in C. ×hytivus. This study helps to elucidate the meiotic properties and evolution of nascent allopolyploids with the dysploid parental karyotypes.


Asunto(s)
Cromosomas de las Plantas , Cucumis/genética , Meiosis/genética , Tetraploidía , Pintura Cromosómica , Hibridación Genética , Hibridación Fluorescente in Situ/métodos , Cariotipo , Translocación Genética
3.
Genome ; 61(6): 397-404, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29611431

RESUMEN

Cucumis anguria is a potential genetic resource for improving crops of the genus Cucumis, owing to its broad-spectrum resistance. However, few cytogenetic studies on C. anguria have been reported because of its small metaphase chromosomes and the scarcity of distinguished chromosomal landmarks. In this study, 14 single-copy genes from cucumber and rDNAs were used as probes for FISH to identify the individual chromosomes of C. anguria. The distinctive signal distribution patterns of the probes allowed us to distinguish each chromosome of C. anguria (A01-A12). Further, detailed chromosome characteristics were obtained through pachytene chromosome FISH. The lengths of pachytene chromosomes varied from 54.80 to 143.41 µm. The proportion of heterochromatin regions varied from 13.56% to 63.86%. Finally, the chromosomal homeologous relationship between C. anguria and cucumber (C1-C7) was analyzed. The results showed that A06 + A09, A03 + A12, A02 + A04, and A01 + A11 were homeologs of C1, C2, C3, and C6, respectively. Furthemore, chromosomes A08, A10, and A05 were homeologs of C4, C5, and C7, respectively. Chromosome identification and homeologous relationship analysis between C. anguria and cucumber lay the foundation for further research of genome structure evolution in species of Cucumis.


Asunto(s)
Cromosomas de las Plantas/genética , Cucumis/genética , Homología de Secuencia de Ácido Nucleico , Genes de Plantas , Heterocromatina/genética , Cariotipo
4.
Chem Commun (Camb) ; 46(39): 7430-2, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20820519

RESUMEN

NiWO(4) nanoparticles have been facilely synthesized by a hydrothermal approach, and used as a catalyst for the hydrodesulfurization of thiophene and its derivative 4,6-dimethyldibenzothiophene, showing a significantly higher activity than commercial NiW/Al(2)O(3).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...