Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Nanotechnol ; 19(3): 298-305, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38052942

RESUMEN

All-optical modulation yields the promise of high-speed information processing. In this field, metasurfaces are rapidly gaining traction as ultrathin multifunctional platforms for light management. Among the featured functionalities, they enable light-wavefront manipulation and more recently demonstrated the ability to perform light-by-light manipulation through nonlinear optical processes. Here, by employing a nonlinear periodic metasurface, we demonstrate the all-optical routing of telecom photons upconverted to the visible range. This is achieved via the interference between two frequency-degenerate upconversion processes, namely, third-harmonic and sum-frequency generation, stemming from the interaction of a pump pulse with its frequency-doubled replica. By tuning the relative phase and polarization between these two pump beams, we route the upconverted signal among the diffraction orders of the metasurface with a modulation efficiency of up to 90%. This can be achieved by concurrently engineering the nonlinear emission of the individual elements (meta-atoms) of the metasurface along with its pitch. Owing to the phase control and ultrafast dynamics of the underlying nonlinear processes, free-space all-optical routing could be potentially performed at rates close to the employed optical frequencies divided by the quality factor of the optical resonances at play. Our approach adds a further twist to optical interferometry, which is a key enabling technique employed in a wide range of applications, such as homodyne detection, radar interferometry, light detection and ranging technology, gravitational-wave detection and molecular photometry. In particular, the nonlinear character of light upconversion combined with phase sensitivity is extremely appealing for enhanced imaging and biosensing.

2.
Opt Lett ; 46(10): 2453-2456, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33988608

RESUMEN

We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

3.
ACS Photonics ; 8(1): 350-359, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33585665

RESUMEN

The many fundamental roto-vibrational resonances of chemical compounds result in strong absorption lines in the mid-infrared region (λ ∼ 2-20 µm). For this reason, mid-infrared spectroscopy plays a key role in label-free sensing, in particular, for chemical recognition, but often lacks the required sensitivity to probe small numbers of molecules. In this work, we propose a vibrational sensing scheme based on Bloch surface waves (BSWs) on 1D photonic crystals to increase the sensitivity of mid-infrared sensors. We report on the design and deposition of CaF2/ZnS 1D photonic crystals. Moreover, we theoretically and experimentally demonstrate the possibility to sustain narrow σ-polarized BSW modes together with broader π-polarized modes in the range of 3-8 µm by means of a customized Fourier transform infrared spectroscopy setup. The multilayer stacks are deposited directly on CaF2 prisms, reducing the number of unnecessary interfaces when exciting in the Kretschmann-Raether configuration. Finally, we compare the performance of mid-IR sensors based on surface plasmon polaritons with the BSW-based sensor. The figures of merit found for BSWs in terms of confinement of the electromagnetic field and propagation length puts them as forefrontrunners for label-free and polarization-dependent sensing devices.

4.
Opt Express ; 28(17): 24981-24990, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32907029

RESUMEN

We investigate light-matter interactions in periodic silicon microcrystals fabricated combining top-down and bottom-up strategies. The morphology of the microcrystals, their periodic arrangement, and their high refractive index allow the exploration of photonic effects in microstructured architectures. We observe a notable decrease in reflectivity above the silicon bandgap from the ultraviolet to the near-infrared. Finite-difference time-domain simulations show that this phenomenon is accompanied by a ∼2-fold absorption enhancement with respect to a flat sample. Finally, we demonstrate that ordered silicon microstructures enable a fine tuning of the light absorption by changing experimentally accessible knobs as pattern and growth parameters. This work will facilitate the implementation of optoelectronic devices based on high-density microcrystals arrays with optimized light-matter interactions.

5.
Opt Express ; 28(15): 22186-22199, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752485

RESUMEN

A novel spectroscopy technique to enable the rapid characterization of discrete mid-infrared integrated photonic waveguides is demonstrated. The technique utilizes lithography patterned polymer blocks that absorb light strongly within the molecular fingerprint region. These act as integrated waveguide detectors when combined with an atomic force microscope that measures the photothermal expansion when infrared light is guided to the block. As a proof of concept, the technique is used to experimentally characterize propagation loss and grating coupler response of Ge-on-Si waveguides at wavelengths from 6 to 10 µm. In addition, when the microscope is operated in scanning mode at fixed wavelength, the guided mode exiting the output facet is imaged with a lateral resolution better than 500 nm i.e. below the diffraction limit. The characterization technique can be applied to any mid-infrared waveguide platform and can provide non-destructive in-situ testing of discrete waveguide components.

6.
Opt Express ; 27(15): 20516-20524, 2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31510144

RESUMEN

We demonstrate the use of plasmonic effects to boost the near-infrared sensitivity of metal-semiconductor-metal detectors. Plasmon-enhanced photodetection is achieved by properly optimizing Au interdigitated electrodes, micro-fabricated on Ge, a semiconductor that features a strong near IR absorption. Finite-difference time-domain simulations, photocurrent experiments and Fourier-transform IR spectroscopy are performed to validate how a relatively simple tuning of the contact geometry allows for an enhancement of the response of the device adapting it to the specific detection needs. A 2-fold gain factor in the Ge absorption characteristics is experimentally demonstrated at 1.4 µm, highlighting the potential of this approach for optoelectronic and sensing applications.

7.
Nano Lett ; 19(10): 7013-7020, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31461291

RESUMEN

The optimization of nonlinear optical processes on the nanoscale is a crucial step for the integration of complex functionalities into compact photonic devices and metasurfaces. In such systems, photon upconversion can be achieved with higher efficiencies via third-order processes, such as third-harmonic generation (THG), thanks to the resonantly enhanced volume currents. Conversely, second-order processes, such as second-harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently because they typically represent small perturbations in the light-matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold for plasmon-enhanced nonlinear optics by providing evidence of a sum-frequency generation (SFG) process seeded by SHG, which sizably contributes to the overall THG yield. We address this mechanism by unveiling a characteristic fingerprint in the polarization state of the THG emission from gold noncentrosymmetric nanoantennas, which directly reflects the asymmetric distribution of second-harmonic fields within the structure and does not depend on the model one employs to describe photon upconversion. We suggest that such cascaded processes may also appear for structures that exhibit only moderate SHG yields. The presence of this peculiar mechanism in THG from plasmonic nanoantennas at telecommunication wavelengths allows us to gain further insight into the physics of plasmon-enhanced nonlinear optical processes. This could be crucial in the realization of nanoscale elements for photon conversion and manipulation operating at room temperature.

8.
Nano Lett ; 19(5): 3104-3114, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30950626

RESUMEN

Photosensitive proteins embedded in the cell membrane (about 5 nm thickness) act as photoactivated proton pumps, ion gates, enzymes, or more generally, as initiators of stimuli for the cell activity. They are composed of a protein backbone and a covalently bound cofactor (e.g. the retinal chromophore in bacteriorhodopsin (BR), channelrhodopsin, and other opsins). The light-induced conformational changes of both the cofactor and the protein are at the basis of the physiological functions of photosensitive proteins. Despite the dramatic development of microscopy techniques, investigating conformational changes of proteins at the membrane monolayer level is still a big challenge. Techniques based on atomic force microscopy (AFM) can detect electric currents through protein monolayers and even molecular binding forces in single-protein molecules but not the conformational changes. For the latter, Fourier-transform infrared spectroscopy (FTIR) using difference-spectroscopy mode is typically employed, but it is performed on macroscopic liquid suspensions or thick films containing large amounts of purified photosensitive proteins. In this work, we develop AFM-assisted, tip-enhanced infrared difference-nanospectroscopy to investigate light-induced conformational changes of the bacteriorhodopsin mutant D96N in single submicrometric native purple membrane patches. We obtain a significant improvement compared with the signal-to-noise ratio of standard IR nanospectroscopy techniques by exploiting the field enhancement in the plasmonic nanogap that forms between a gold-coated AFM probe tip and an ultraflat gold surface, as further supported by electromagnetic and thermal simulations. IR difference-spectra in the 1450-1800 cm-1 range are recorded from individual patches as thin as 10 nm, with a diameter of less than 500 nm, well beyond the diffraction limit for FTIR microspectroscopy. We find clear spectroscopic evidence of a branching of the photocycle for BR molecules in direct contact with the gold surfaces, with equal amounts of proteins either following the standard proton-pump photocycle or being trapped in an intermediate state not directly contributing to light-induced proton transport. Our results are particularly relevant for BR-based optoelectronic and energy-harvesting devices, where BR molecular monolayers are put in contact with metal surfaces, and, more generally, for AFM-based IR spectroscopy studies of conformational changes of proteins embedded in intrinsically heterogeneous native cell membranes.


Asunto(s)
Bacteriorodopsinas/ultraestructura , Proteínas de la Membrana/ultraestructura , Proteínas Mutantes/ultraestructura , Bombas de Protones/ultraestructura , Bacteriorodopsinas/química , Bacteriorodopsinas/genética , Campos Electromagnéticos , Transporte Iónico/genética , Proteínas de la Membrana/química , Microscopía de Fuerza Atómica , Proteínas Mutantes/química , Proteínas Mutantes/genética , Nanotecnología/métodos , Conformación Proteica , Bombas de Protones/química , Membrana Púrpura/química , Membrana Púrpura/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier
9.
Sci Rep ; 9(1): 29, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631081

RESUMEN

Modeling optical tweezers in the T-matrix formalism has been of key importance for accurate and efficient calculations of optical forces and their comparison with experiments. Here we extend this formalism to the modeling of chiral optomechanics and optical tweezers where chiral light is used for optical manipulation and trapping of optically active particles. We first use the Bohren decomposition to deal with the light scattering of chiral light on optically active particles. Thus, we show analytically that all the observables (cross sections, asymmetry parameters) are split into a helicity dependent and independent part and study a practical example of a complex resin particle with inner copper-coated stainless steel helices. Then, we apply this chiral T-matrix framework to optical tweezers where a tightly focused chiral field is used to trap an optically active spherical particle, calculate the chiral behaviour of optical trapping stiffnesses and their size scaling, and extend calculations to chiral nanowires and clusters of astrophysical interest. Such general light scattering framework opens perspectives for modeling optical forces on biological materials where optically active amino acids and carbohydrates are present.

10.
Light Sci Appl ; 7: 106, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30564312

RESUMEN

We demonstrate third harmonic generation in plasmonic antennas consisting of highly doped germanium grown on silicon substrates and designed to be resonant in the mid-infrared frequency range that is inaccessible with conventional nonlinear plasmonic materials. Owing to the near-field enhancement, the result is an ultrafast, subdiffraction, coherent light source with a wavelength tunable between 3 and 5 µm, and ideally overlapping with the fingerprint region of molecular vibrations. To observe the nonlinearity in this challenging spectral window, a high-power femtosecond laser system equipped with parametric frequency conversion in combination with an all-reflective confocal microscope setup is employed. We demonstrate spatially resolved maps of the linear scattering cross section and the nonlinear emission of single isolated antenna structures. A clear third-order power dependence as well as mid-infrared emission spectra prove the nonlinear nature of the light emission. Simulations support the observed resonance length of the double-rod antenna and demonstrate that the field enhancement inside the antenna material is responsible for the nonlinear frequency mixing.

11.
Chirality ; 30(7): 883-889, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29782670

RESUMEN

We study the chiroptical properties of one-dimensional photonic crystals supporting superchiral surface waves by introducing a simple formalism based on the Fresnel reflection matrix. We show that the proposed framework provides useful insights on the behavior of all the relevant chiroptical quantities, allowing for a deeper understanding of surface-enhanced chiral sensing platforms based on one-dimensional photonic crystals. Finally, we analyze and discuss the limitations of such platforms as the surface concentration of the target chiral analytes is gradually increased.

12.
Sci Rep ; 8(1): 1921, 2018 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-29382908

RESUMEN

The validity of Kirchhoff's laws in plasmonic nanocircuitry is investigated by studying a junction of plasmonic two-wire transmission lines. We find that Kirchhoff's laws are valid for sufficiently small values of a phenomenological parameter κ relating the geometrical parameters of the transmission line with the effective wavelength of the guided mode. Beyond such regime, for large values of the phenomenological parameter, increasing deviations occur and the equivalent impedance description (Kirchhoff's laws) can only provide rough, but nevertheless useful, guidelines for the design of more complex plasmonic circuitry. As an example we investigate a system composed of a two-wire transmission line and a nanoantenna as the load. By addition of a parallel stub designed according to Kirchhoff's laws we achieve maximum signal transfer to the nanoantenna.

13.
Phys Rev Lett ; 117(4): 047401, 2016 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-27494498

RESUMEN

Impulsive interband excitation with femtosecond near-infrared pulses establishes a plasma response in intrinsic germanium structures fabricated on a silicon substrate. This direct approach activates the plasmonic resonance of the Ge structures and enables their use as optical antennas up to the mid-infrared spectral range. The optical switching lasts for hundreds of picoseconds until charge recombination redshifts the plasma frequency. The full behavior of the structures is modeled by the electrodynamic response established by an electron-hole plasma in a regular array of antennas.

14.
ACS Nano ; 10(2): 2251-8, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26767699

RESUMEN

Mechanical vibrational resonances in metal nanoparticles are intensively studied because they provide insight into nanoscale elasticity and for their potential application to ultrasensitive mass detection. In this paper, we use broadband femtosecond pump-probe spectroscopy to study the longitudinal acoustic phonons of arrays of gold nanorods with different aspect ratios, fabricated by electron beam lithography with very high size uniformity. We follow in real time the impulsively excited extensional oscillations of the nanorods by measuring the transient shift of the localized surface plasmon band. Broadband and high-sensitivity detection of the time-dependent extinction spectra enables one to develop a model that quantitatively describes the periodic variation of the plasmon extinction coefficient starting from the steady-state spectrum with only one additional free parameter. This model allows us to retrieve the time-dependent elongation of the nanorods with an ultrahigh sensitivity and to measure oscillation amplitudes of just a few picometers and plasmon energy shifts on the order of 10(-2) meV.

15.
Nano Lett ; 15(11): 7225-31, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26457387

RESUMEN

Midinfrared plasmonic sensing allows the direct targeting of unique vibrational fingerprints of molecules. While gold has been used almost exclusively so far, recent research has focused on semiconductors with the potential to revolutionize plasmonic devices. We fabricate antennas out of heavily doped Ge films epitaxially grown on Si wafers and demonstrate up to 2 orders of magnitude signal enhancement for the molecules located in the antenna hot spots compared to those located on a bare silicon substrate. Our results set a new path toward integration of plasmonic sensors with the ubiquitous CMOS platform.

16.
Nat Nanotechnol ; 10(5): 412-7, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25895003

RESUMEN

Boosting nonlinear frequency conversion in extremely confined volumes remains a challenge in nano-optics research, but can enable applications in nanomedicine, photocatalysis and background-free biosensing. To obtain brighter nonlinear nanoscale sources, approaches that enhance the electromagnetic field intensity and counter the lack of phase matching in nanoplasmonic systems are often employed. However, the high degree of symmetry in the crystalline structure of plasmonic materials (metals in particular) and in nanoantenna designs strongly quenches second harmonic generation. Here, we describe doubly-resonant single-crystalline gold nanostructures with no axial symmetry displaying spatial mode overlap at both the excitation and second harmonic wavelengths. The combination of these features allows the attainment of a nonlinear coefficient for second harmonic generation of ∼5 × 10(-10) W(-1), enabling a second harmonic photon yield higher than 3 × 10(6) photons per second. Theoretical estimations point toward the use of our nonlinear plasmonic nanoantennas as efficient platforms for label-free molecular sensing.

17.
Nat Mater ; 13(8): 790-5, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24952750

RESUMEN

By exploiting the spin degree of freedom of carriers inside electronic devices, spintronics has a huge potential for quantum computation and dissipationless interconnects. Pure spin currents in spintronic devices should be driven by a spin voltage generator, able to drive the spin distribution out of equilibrium without inducing charge currents. Ideally, such a generator should operate at room temperature, be highly integrable with existing semiconductor technology, and not interfere with other spintronic building blocks that make use of ferromagnetic materials. Here we demonstrate a device that matches these requirements by realizing the spintronic equivalent of a photovoltaic generator. Whereas a photovoltaic generator spatially separates photoexcited electrons and holes, our device exploits circularly polarized light to produce two spatially well-defined electron populations with opposite in-plane spin projections. This is achieved by modulating the phase and amplitude of the light wavefronts entering a semiconductor (germanium) with a patterned metal overlayer (platinum). The resulting light diffraction pattern features a spatially modulated chirality inside the semiconductor, which locally excites spin-polarized electrons thanks to electric dipole selection rules.

18.
Carbohydr Polym ; 92(2): 2128-34, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23399267

RESUMEN

We address the oxygen-barrier properties of a nanocomposite created by layer-by-layer assembly of two biopolymers, chitosan (CS) and cellulose, in nanocrystals form (CNs), on an amorphous PET substrate. We systematically investigated the oxygen permeability, morphology, and thickness of the nanocomposite grown under two different pH combinations and with different number of deposition cycles, up to 30 bilayers. Noticeably, the thickness of each deposited bilayer can be largely tuned by the pH value of the solution, from ~7 up to ~26 nm in the tested conditions. By our analysis, it is reliably concluded that such CS/CNs nanocomposite holds promises for gas barrier applications in food and drug packaging as a clear coating on plastic films and tridimensional objects, improving performance and sustainability of the final packages.


Asunto(s)
Celulosa/química , Quitosano/química , Nanopartículas/química , Oxígeno/química , Tecnología Química Verde , Permeabilidad
19.
Nano Lett ; 12(11): 5504-9, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22984927

RESUMEN

In the presence of matter, there is no fundamental limit preventing confinement of visible light even down to atomic scales. Achieving such confinement and the corresponding resonant intensity enhancement inevitably requires simultaneous control over atomic-scale details of material structures and over the optical modes that such structures support. By means of self-assembly we have obtained side-by-side aligned gold nanorod dimers with robust atomically defined gaps reaching below 0.5 nm. The existence of atomically confined light fields in these gaps is demonstrated by observing extreme Coulomb splitting of corresponding symmetric and antisymmetric dimer eigenmodes of more than 800 meV in white-light scattering experiments. Our results open new perspectives for atomically resolved spectroscopic imaging, deeply nonlinear optics, ultrasensing, cavity optomechanics, as well as for the realization of novel quantum-optical devices.


Asunto(s)
Nanotecnología/métodos , Óptica y Fotónica , Dimerización , Campos Electromagnéticos , Oro/química , Luz , Nanopartículas del Metal/química , Nanotubos , Teoría Cuántica , Dispersión de Radiación , Espectrofotometría/métodos
20.
Rep Prog Phys ; 75(2): 024402, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22790344

RESUMEN

Nanoantennas for visible and infrared radiation can strongly enhance the interaction of light with nanoscale matter by their ability to efficiently link propagating and spatially localized optical fields. This ability unlocks an enormous potential for applications ranging from nanoscale optical microscopy and spectroscopy over solar energy conversion, integrated optical nanocircuitry, opto-electronics and density-of-states engineering to ultra-sensing as well as enhancement of optical nonlinearities. Here we review the current understanding of metallic optical antennas based on the background of both well-developed radiowave antenna engineering and plasmonics. In particular, we discuss the role of plasmonic resonances on the performance of nanoantennas and address the influence of geometrical parameters imposed by nanofabrication. Finally, we give a brief account of the current status of the field and the major established and emerging lines of investigation in this vivid area of research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...