Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 30(Pt 1): 35-50, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601924

RESUMEN

A promising accelerator light source mechanism called steady-state microbunching (SSMB) is being actively studied. With the combination of strong coherent radiation from microbunching and high repetition rate of a storage ring, high-average-power narrow-band radiation can be anticipated from an SSMB storage ring, with wavelengths ranging from THz to soft X-ray. Such a novel light source could provide new opportunities for accelerator photon science like high-resolution angle-resolved photoemission spectroscopy and industrial applications like extreme ultraviolet (EUV) lithography. In this paper, a theoretical and numerical study of the average and statistical properties of coherent radiation from SSMB are presented. The results show that 1 kW average-power quasi-continuous-wave EUV radiation can be obtained from an SSMB ring provided that an average current of 1 A and a microbunch train with bunch length of 3 nm can be formed at the radiator which is assumed to be an undulator. Together with the narrow-band feature, the EUV photon flux can reach 6 × 1015 photons s-1 within a 0.1 meV energy bandwidth, which is three orders of magnitude higher than that in a conventional synchrotron source and is appealing for fundamental condensed matter physics and other research. In this theoretical investigation, we have generalized the definition and derivation of the transverse form factor of an electron beam which can quantify the impact of its transverse size on coherent radiation. In particular, it has been shown that the narrow-band feature of SSMB radiation is strongly correlated with the finite transverse electron beam size. Considering the pointlike nature of electrons and quantum nature of radiation, the coherent radiation fluctuates from microbunch to microbunch, or for a single microbunch from turn to turn. Some important results concerning the statistical properties of SSMB radiation are presented, with a brief discussion on its potential applications, for example the beam diagnostics. The presented work is of value for the development of SSMB to better serve potential synchrotron radiation users. In addition, this also sheds light on understanding the radiation characteristics of free-electron lasers, coherent harmonic generation, etc.

2.
Sci Adv ; 5(3): eaav9075, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30989106

RESUMEN

Contemporary models of intrafibrillar mineralization mechanisms are established using collagen fibrils as templates without considering the contribution from collagen-bound apatite nucleation inhibitors. However, collagen matrices destined for mineralization in vertebrates contain bound matrix proteins for intrafibrillar mineralization. Negatively charged, high-molecular weight polycarboxylic acid is cross-linked to reconstituted collagen to create a model for examining the contribution of collagen-ligand interaction to intrafibrillar mineralization. Cryogenic electron microscopy and molecular dynamics simulation show that, after cross-linking to collagen, the bound polyelectrolyte caches prenucleation cluster singlets into chain-like aggregates along the fibrillar surface to increase the pool of mineralization precursors available for intrafibrillar mineralization. Higher-quality mineralized scaffolds with better biomechanical properties are achieved compared with mineralization of unmodified scaffolds in polyelectrolyte-stabilized mineralization solution. Collagen-ligand interaction provides insights on the genesis of heterogeneously mineralized tissues and the potential causes of ectopic calcification in nonmineralized body tissues.


Asunto(s)
Materiales Biomiméticos/metabolismo , Calcificación Fisiológica , Colágeno/metabolismo , Ligandos , Biomimética/métodos , Matriz Extracelular/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Microscopía Electrónica/métodos , Minerales/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Polielectrolitos/metabolismo , Andamios del Tejido
3.
J Biol Chem ; 266(36): 24690-7, 1991 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-1761564

RESUMEN

The intracellular Ca2+ pump inhibitor, thapsigargin, added to DDT1MF-2 smooth muscle cells in culture, irreversibly inhibited accumulation of Ca2+ within cells, permanently emptied the inositol 1,4,5-trisphosphate (InsP3)-sensitive Ca2+ pool, and simultaneously induced profound alteration of cell growth. After only a brief (30-min) treatment of cultured cells with 3 microM thapsigargin followed by extensive washing, the total releasable InsP3-sensitive Ca2+ pool remained entirely empty, even after 7 days of culture without thapsigargin. After thapsigargin treatment, cells retained viability, usual morphology, and normal mitochondrial function. Despite the otherwise normal appearance and function of thapsigargin-treated cells, cell division was completely blocked by thapsigargin. DNA synthesis was completely inhibited when thapsigargin was added immediately after passaging, but was suppressed only slowly (4-6 h) when added to rapidly synthesizing cells (24 h after passaging). Protein synthesis was reduced by approximately 70% in thapsigargin-treated cells. The sensitivity of thapsigargin-mediated inhibition of cell division, DNA synthesis, protein synthesis, and Ca(2+)-pumping activity were all similar with the EC50 values for thapsigargin in each case being close to 10 nM. Upon application to DDT1MF-2 cells, thapsigargin transiently increased resting cytosolic Ca2+ (0.15 microM) to a peak of 0.3 microM within 50 s; thereafter, free Ca2+ declined to 0.2 microM by 150 s and continued to slowly decline toward resting levels. Cells treated with thapsigargin for 1-72 h in culture displayed normal resting cytosolic Ca2+ levels. However, application of thapsigargin or epinephrine to such cells resulted in no change in the intracellular Ca2+, indicating that the internal Ca2+ pool remained completely empty. These results suggest that emptying of Ca2+ from intracellular thapsigargin-sensitive Ca(2+)-pumping pools induces profound alteration of cell proliferation.


Asunto(s)
Calcio/metabolismo , Músculos/efectos de los fármacos , Terpenos/farmacología , Animales , División Celular/efectos de los fármacos , Línea Celular , Cricetinae , ADN/biosíntesis , ADN/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Metionina/metabolismo , Músculos/metabolismo , Tapsigargina , Timidina/metabolismo
4.
J Biol Chem ; 266(14): 8801-6, 1991 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-1827436

RESUMEN

Recent studies have identified inositol 1,4,5-tris-phosphate(InsP3)-sensitive and -insensitive Ca2+ pools and a GTP-dependent mechanism that transfers Ca2+ between them. Here, the Ca2+ pump-inhibitory sesquiterpene lactone, thapsigargin, is shown to distinguish these two Ca2+ pools and identify a third Ca2+ pumping pool unresponsive to InsP3 or GTP. Using saponin-permeabilized DDT1MF-2 smooth muscle cells, approximately 75% of total intracellular ATP-dependent Ca2+ accumulation is blocked by thapsigargin with an IC50 of 30 nM. In contrast, 1 mM vanadate or 5 microM A23187 block 100% of Ca2+ accumulation. The thapsigargin-responsive Ca2+ pool corresponds exactly to that released by 10 microM InsP3 in the presence of 10 microM GTP. Indeed, addition of InsP3 with GTP has no effect on Ca2+ accumulated in the presence of 3 microM thapsigargin whereas A23187 releases all the remaining Ca2+. Added after maximal Ca2+ uptake, thapsigargin induces only slow Ca2+ release consistent with blockade of pumping activity. Unlike InsP3, the action of thapsigargin is entirely heparin insensitive. The large increment in Ca2+ uptake caused by 12 mM oxalate is completely reversed by thapsigargin, indicating that thapsigargin functions on an oxalate-permeable pool. Moreover, the still larger uptake induced by GTP in the presence of oxalate is also completely reversed by either thapsigargin or InsP3. The results indicate that thasigargin blocks Ca2+ uptake into two discrete pools: the InsP3-sensitive, oxalate-permeable Ca2+ pool and the InsP3-insensitive, oxalate-impermeable Ca2+ pool that can be "recruited" into the InsP3-sensitive pool by GTP-dependent Ca2+ translocation (Ghosh, T. K., Mullaney, J.M., Tarazi, F.I., and Gill, D.L. (1989) Nature 340, 236-239). Additionally, a third Ca2+ pool is defined, unreleasable by InsP3 or GTP, and containing a thapsigargin-insensitive Ca2+ pump.


Asunto(s)
Calcio/metabolismo , Compartimento Celular/efectos de los fármacos , Terpenos/farmacología , Animales , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Células Cultivadas , Cricetinae , Relación Dosis-Respuesta a Droga , Guanosina Trifosfato/farmacología , Heparina/farmacología , Inositol 1,4,5-Trifosfato/farmacología , Músculo Liso/metabolismo , Organoides/metabolismo , Oxalatos/farmacología , Tapsigargina , Vanadatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...