Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diabetes Obes Metab ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38646838

RESUMEN

AIM: To investigate the metabolism and disposition characteristics of HSK7653 in healthy male Chinese participants. METHODS: A single oral dose of 80 µCi (25 mg) [14C]HSK7653 capsules was administered to six healthy participants, and blood, plasma, urine and faeces were collected. Quantitative and qualitative analysis was conducted to investigate the pharmacokinetics, blood-to-plasma ratio, mass balance and metabolism of HSK7653. RESULTS: The drug was well absorbed and reached a maximum concentration at 1.25 h. The drug-related components (HSK7653 and its metabolites) were eliminated slowly, with a half-life (t1/2) of 111 h. Unchanged HSK7653 contributed to more than 97% of the total radioactivity in all plasma samples. The blood-to-plasma ratio (0.573-0.845) indicated that HSK7653 did not tend to distribute into blood cells. At 504 h postdose, up to 95.9% of the dose was excreted, including 79.8% in urine and 16.1% in faeces. Most of the radioactivity (75.5% dose) in excreta was unchanged HSK7653. In addition, nine metabolites were detected in urine and faeces. The most abundant metabolite was M6-2, a dioxidation product of HSK7653, which accounted for 4.73% and 2.63% of the dose in urine and faeces, respectively. The main metabolic pathways of HSK7653 in vivo included oxidation, pyrrole ring opening and sulphonamide hydrolysation. CONCLUSION: HSK7653 was well absorbed, slightly metabolized and slowly excreted in humans. The high plasma exposure and long t1/2 of HSK7653 may contribute to its long-lasting efficacy as a long-acting dipeptidyl peptidase-4 inhibitor.

2.
Curr Drug Metab ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38454771

RESUMEN

BACKGROUND: Prusogliptin is a potent and selective DPP-4 inhibitor. In different animal models, Prusogliptin showed potential efficacy in the treatment of type 2 diabetes. However, the knowledge of its pharmacokinetics and safety in patients with liver dysfunction is limited. OBJECTIVES: The present study evaluated the pharmacokinetics and safety of Prusogliptin in subjects with mild or moderate hepatic impairment compared with healthy subjects. METHODS: According to the liver function of the subjects, we divided them into a mild liver dysfunction group, a moderate liver dysfunction group and a normal liver function group. All subjects in three groups received a single oral dose of Prusogliptin 100-mg tablets. Pharmacokinetics and safety index collection was carried out before and after taking the drug. Plasma pharmacokinetics of Prusogliptin were evaluated, and geometric least- -squares mean (GLSM) and associated 90% confidence intervals for insufficient groups versus the control group were calculated for plasma exposures. RESULTS: After a single oral administration of 100 mg of Prusogliptin tablets, the exposure level of Prusogliptin in subjects with mild liver dysfunction was slightly higher than that in healthy subjects. The exposure level of Prusogliptin was significantly increased in subjects with moderate liver dysfunction. There were no adverse events in this study. CONCLUSION: The exposure level of Prusogliptin in subjects with liver dysfunction was higher than that in healthy subjects. No participant was observed of adverse events. Prusogliptin tablets were safe and well tolerated in Chinese subjects with mild to moderate liver dysfunction and normal liver function.

3.
Expert Opin Investig Drugs ; 33(1): 63-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38224050

RESUMEN

BACKGROUND: Iruplinalkib is a novel anaplastic lymphoma kinase (ALK) inhibitor for the treatment of ALK-positive crizotinib-resistant NSCLC. RESEARCH DESIGN AND METHODS: A single oral dose of 120 mg/3.7 MBq [14C]iruplinalkib was administered to healthy subjects. Blood, urine and fecal samples were collected and analyzed for iruplinalkib and its metabolites. The safety of iruplinalkib was also assessed. RESULTS: Iruplinalkib was absorbed quickly and eliminated slowly from plasma, with a Tmax of 1.5 h and t1/2 of 28.6 h. About 88.85% of iruplinalkib was excreted at 312 h, including 20.23% in urine and 68.63% in feces. Seventeen metabolites of iruplinalkib were identified, and M3b (demethylation), M7 (cysteine conjugation), M11 (oxidative dehydrogenation and cysteine conjugation of M3b) and M12 (oxidative dehydrogenation and cysteine conjugation) were considered the prominent metabolites in humans. Iruplinalkib-related compounds were found to be covalently bound to proteins, accounting for 7.70% in plasma and 17.96% in feces, which suggested chemically reactive metabolites were formed. There were no serious adverse events observed in the study. CONCLUSIONS: Iruplinalkib was widely metabolized and excreted mainly through feces in humans. Unchanged iruplinalkib, cysteine conjugates and covalent protein binding products were the main drug-related compounds in circulation. Iruplinalkib was well tolerated at the study dose. TRIAL REGISTRATION: The trial is registered at ClinicalTrials.gov (Identifier: Anonymized).


Asunto(s)
Cisteína , Inhibidores de Proteínas Quinasas , Humanos , Administración Oral , Cisteína/uso terapéutico , Voluntarios Sanos , Neoplasias Pulmonares/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras
4.
Eur J Drug Metab Pharmacokinet ; 48(6): 723-731, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37833493

RESUMEN

BACKGROUND AND OBJECTIVE: HSK21542, a synthetic short-chain polypeptide, is a selective peripheral kappa opioid receptor (KOR) agonist. In this single-centre, non-randomized, open-label study, the pharmacokinetics, mass balance, metabolism and excretion of HSK21542 were investigated. METHODS: A single intravenous dose of 2 µg/0.212 µCi/kg [14C]HSK21542 was administered to six healthy male subjects. Samples of blood, urine and faeces were collected for quantitative determination of total radioactivity and unchanged HSK21542, and identification of metabolites. RESULTS: The mean total recovery was 81.89% of the radiolabelled dose over 240 h post-dose, with 35.60% and 46.30% excreted in faeces and urine, respectively. The mean maximum concentration (Cmax), the half-life (t1/2) and the area under the concentration-time curve (AUC0-t) of total radioactivity (TRA) in plasma were 20.4 ±4.16 ng Eq./g, 1.93 ± 0.322 h and 21.8 ± 2.93 h·ng Eq./g, respectively, while the Cmax, t1/2 and the AUC0-t of unchanged HSK21542 were 18.3 ± 3.36 ng/mL, 1.66 ± 0.185 h and 18.4 ± 2.24 h·ng/mL, respectively. The blood-to-plasma ratios of TRA at several times ranged from 0.46 to 0.54. [14C]HSK21542 was detected as the main circulating substance in plasma, accounting for 92.17% of the AUC of TRA. The unchanged parent compound was the only major radioactive chemical in urine (100.00% of TRA) and faeces (93.53% of TRA). Metabolites were very minor components. CONCLUSIONS: HSK21542 was barely metabolized in vivo and mainly excreted with unchanged HSK21542 as its main circulating component in plasma. It was speculated that renal excretion was the principal excretion pathway, and faecal excretion was the secondary pathway. CLINICAL TRIAL REGISTRATION NUMBER: NCT05835934.


Asunto(s)
Péptidos , Receptores Opioides kappa , Humanos , Masculino , Administración Oral , Heces/química , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/análisis , Péptidos/farmacocinética , Péptidos/farmacología
6.
Front Pharmacol ; 14: 1116073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063263

RESUMEN

SHR6390 (dalpiciclib) is a selective and effective cyclin-dependent kinase (CDK) 4/6 inhibitor and an effective cancer therapeutic agent. On 31 December 2021, the new drug application was approved by National Medical Product Administration (NMPA). The metabolism, mass balance, and pharmacokinetics of SHR6390 in 6 healthy Chinese male subjects after a single oral dose of 150 mg [14C]SHR6390 (150 µCi) in this research. The Tmax of SHR6390 was 3.00 h. In plasma, the t 1/2 of SHR6390 and its relative components was approximately 17.50 h. The radioactivity B/P (blood-to-plasma) AUC0-t ratio was 1.81, indicating the preferential distribution of drug-related substances in blood cells. At 312 h after administration, the average cumulative excretion of radioactivity was 94.63% of the dose, including 22.69% in urine and 71.93% in stool. Thirteen metabolites were identified. In plasma, because of the low level of radioactivity, only SHR6390 was detected in pooled AUC0-24 h plasma. Stool SHR6390 was the main component in urine and stool. Five metabolites were identified in urine, and 12 metabolites were identified in stool. Overall, faecal clearance is the main method of excretion.

7.
Xenobiotica ; 53(2): 69-83, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36745485

RESUMEN

SHR0302, a selective JAK1 inhibitor developed by Jiangsu Hengrui Pharmaceutical Co., was intended for the treatment of rheumatoid arthritis. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of SHR0302 in six healthy Chinese male subjects after a single 8 mg (80 µCi) oral dose of [14C]SHR0302.SHR0302 was absorbed rapidly (Tmax = 0.505 h), and the average t1/2 of the SHR0302-related components in plasma was approximately 9.18 h. After an oral dose was administered, the average cumulative excretion of the radioactive components was 100.56% ± 1.51%, including 60.95% ± 11.62% in urine and 39.61% ± 10.52% in faeces.A total of 16 metabolites were identified. In plasma, the parent drug SHR0302 accounted for 90.42% of the total plasma radioactivity. In urine, SHR161279 was the main metabolite, accounting for 33.61% of the dose, whereas the parent drug SHR0302 only accounted for 5.1% of the dose. In faeces, the parent drug SHR0302 accounted for 23.73% of the dose, and SHR161279 was the significant metabolite, accounting for 5.67% of the dose. In conclusion, SHR0302-related radioactivity was mainly excreted through urine (60.95%) and secondarily through faeces (39.61%).The metabolic reaction of SHR0302 in the human body is mainly through mono-oxidation and glucuronidation. The main metabolic location of SHR0302 in the human body is the pyrrolopyrimidine ring.


Asunto(s)
Líquidos Corporales , Ácidos Sulfúricos , Humanos , Masculino , Heces , Administración Oral , Radioisótopos de Carbono , Janus Quinasa 1
8.
Eur J Drug Metab Pharmacokinet ; 47(6): 761-775, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35915365

RESUMEN

Nucleobase and nucleoside analogs (NAs) play important roles in cancer therapy. Although there are obvious individual differences in NA treatments, most NAs lack direct relationships between their plasma concentration and efficacy or adverse effects. Accumulating evidence suggests that the intracellular active metabolite levels of NAs predict patient outcomes. This article reviewed the relationships between NA intracellular active metabolite levels and their efficacy or adverse effects. The factors affecting the formation of intracellular active metabolites and combination regimens that elevate intracellular active metabolite levels were also reviewed. Given the mechanism of NA cytotoxicity, NA intracellular active metabolite levels may be predictive of clinical outcomes. Many clinical studies support this hypothesis. Therefore, the monitoring of intracellular active metabolite levels is beneficial for individualized NA treatment. However, to perform clinical monitoring in practice, well-designed studies are needed to explore the optimal threshold or range and the appropriate regimen adjustment strategies based on these parameters.


Asunto(s)
Nucleósidos , Medicina de Precisión , Humanos , Nucleósidos/metabolismo , Nucleósidos/uso terapéutico
9.
Eur J Nucl Med Mol Imaging ; 49(13): 4394-4405, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35829748

RESUMEN

PURPOSE: Positron emission tomography (PET) with specific diagnostic probes for quantifying CD8+ T cells has emerged as a powerful technique for monitoring the immune response. However, most CD8+ T cell radiotracers are based on antibodies or antibody fragments, which are slowly cleared from circulation. Herein, we aimed to develop and assess 68 Ga-NODAGA-SNA006 for instant PET (iPET) imaging of CD8+ T cells. METHODS: A novel nanobody without a hexahistidine (His6) tag, SNA006-GSC, was designed, site-specifically conjugated with NODAGA-maleimide and radiolabelled with 68 Ga. The PET imaging profiles of 68 Ga-NODAGA-SNA006 were evaluated in BALB/c MC38-CD8+/CD8- tumour models and cynomolgus monkeys. Three volunteers with lung cancer underwent whole-body PET/CT imaging after 68 Ga-NODAGA-SNA006 administration. The biodistribution, pharmacokinetics and dosimetry of patients were also investigated. In addition, combined with immunohistochemistry (IHC), the quantitative performance of the tracer for monitoring CD8 expression was evaluated in BALB/c MC38-CD8+/CD8- and human subjects. RESULTS: 68 Ga-NODAGA-SNA006 was prepared with RCP > 98% and SA > 100 GBq/µmol. 68 Ga-NODAGA-SNA006 exhibited specific uptake in MC38-CD8+ xenografts tumours, CD8-rich tissues (such as the spleen) in monkeys and CD8+ tumour lesions in patients within 1 h. Fast washout from circulation was observed in three volunteers (t1/2 < 20 min). A preliminary quantitative linear relationship (R2 = 0.9668, p < 0.0001 for xenografts and R2 = 0.7924, p = 0.0013 for lung patients) appeared between 68 Ga-NODAGA-SNA006 uptake and CD8 expression. 68 Ga-NODAGA-SNA006 was well tolerated by all patients. CONCLUSION: 68 Ga-NODAGA-SNA006 PET imaging can instantly quantify CD8 expression with an ideal safety profile and is expected to be important for dynamically tracking CD8+ T cells and monitoring immune responses for individualised cancer immunotherapy. TRIAL REGISTRATION: NCT05126927 (19 November 2021, retrospectively registered).


Asunto(s)
Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Proyectos Piloto , Distribución Tisular , Linfocitos T CD8-positivos , Tomografía Computarizada por Rayos X , Compuestos Heterocíclicos con 1 Anillo , Tomografía de Emisión de Positrones/métodos , Acetatos , Maleimidas , Fragmentos de Inmunoglobulinas , Radioisótopos de Galio , Línea Celular Tumoral
11.
Br J Clin Pharmacol ; 88(7): 3307-3320, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35112382

RESUMEN

AIM: This trial (NCT04013048) investigated the metabolite profiles, mass balance and pharmacokinetics of fuzuloparib, a novel poly (ADP-ribose) polymerase inhibitor, in subjects with advanced solid cancers. METHODS: A single dose of 150 mg [14 C]fuzuloparib was administered to five subjects with advanced solid cancers. Blood, urine and faecal samples were collected, analysed for radioactivity and unchanged fuzuloparib, and profiled for metabolites. The safety of the medicine was assessed during the study. RESULTS: The maximum concentrations (Cmax ) of the total radioactivity (TRA) and unchanged fuzuloparib in plasma were 5.39 µg eq./mL and 4.19 µg/mL, respectively, at approximately 4 hours post dose. The exposure (AUC0-t ) of fuzuloparib accounted for 70.7% of the TRA in plasma, and no single metabolite was observed accounting for more than 10% of the plasma TRA. The recovery of TRA in excreta was 103.3 ± 3.8% in 288 hours, including 59.1 ± 9.9% in urine and 44.2 ± 10.8% in faeces. Sixteen metabolites of fuzuloparib were identified, including mono-oxidation (M1), hydrogenation (M2), di-oxidation (M3), trioxidation (M4), glucuronidation (M5, M7, M8) and de-ethylation (M6) products, and there was no specific binding between these metabolites and blood cells. Aliphatic hydroxylated fuzuloparib (M1-1) was the primary metabolite in the excreta, accounting for more than 40% of the dose for subjects. There were no serious adverse events observed in the study. CONCLUSION: Fuzuloparib was widely metabolized and excreted completely through urine and faeces in subjects with advanced solid cancer. Unchanged fuzuloparib was indicated to be the primary drug-related compound in circulation. [14 C]fuzuloparib was well-tolerated at the study dose.


Asunto(s)
Antineoplásicos , Neoplasias , Adenosina Difosfato/análisis , Administración Oral , Antineoplásicos/efectos adversos , Heces/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/análisis , Ribosa/análisis
12.
Xenobiotica ; 52(1): 38-45, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34743655

RESUMEN

The metabolism and excretion of cetagliptin were investigated in healthy male subjects after a single oral dose of 100mg/50µCi [14C] cetagliptin.The mean concentration-time profile of cetagliptin was similar to that of total radioactivity in plasma after oral administration of [14C] cetagliptin in healthy male subjects. Cetagliptin was rapidly absorbed after oral administration. Unchanged cetagliptin was the most abundant radioactive component in all matrices investigated. Approximately 53.13% of plasma AUC of total radioactivity was accounted for by cetagliptin. Each metabolite plasma AUC was not higher than 2.93% of plasma AUC of total radioactivity. By 336 h after administration, 91.68% of the administered radioactivity was excreted, and the cumulative excretion in the urine and faeces was 72.88% and 18.81%, respectively. The primary route of excretion of radioactivity was via the kidneys.Four metabolites were detected at trace levels, and it involved hydroxylated (M436-1 and M436-3), N- sulphate (M500), and N-carbamoyl glucuronic acid conjugates (M640B) of cetagliptin. These metabolites were detected also in plasma, urine, and faeces at low levels, except that metabolite M640B was not detected in faeces. All metabolites were observed with <10% of parent compound systemic exposure after oral administration.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Administración Oral , Radioisótopos de Carbono , Heces , Voluntarios Sanos , Humanos , Hipoglucemiantes , Masculino
13.
Br J Clin Pharmacol ; 87(1): 93-105, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32415708

RESUMEN

AIMS: This trial (NCT03751956) investigated the mass balance, pharmacokinetics and pharmacodynamics of HSK3486, a novel anaesthetic, in healthy subjects. METHODS: A single dose of 0.4 mg/kg [14 C]HSK3486 was administered to six healthy subjects. Blood, urine and faecal samples were collected, analysed for radioactivity, unchanged HSK3486 and profiled for metabolites. The Modified Observer's Assessment of Alertness/Sedation (MOAA/S) scale and vital signs were closely monitored during the study. RESULTS: The mean recovery of total radioactivity in excreta was 87.3% in 240 h, including 84.6% in urine and 2.65% in faeces. The exposure (AUC0-t ) of total radioactivity was much higher than that of unchanged HSK3486 in plasma, indicating there were circulating metabolites in plasma. The glucuronide conjugate of HSK3486 (M4) was found as the only major circulating metabolite in plasma (79.3%), while unchanged HSK3486 accounted for only 3.97% of the total radiation exposure. M4 also resulted in a longer estimated elimination half-life (t1/2 ) of total radioactivity than that of unchanged HSK3486 in plasma. Fortunately, the metabolite was detected to be not specific to red blood cells and was suggested to be nonhypnotic and nontoxic. All the subjects were quickly anaesthetized (2 min) after drug administration and woke up smoothly after a short time (5.5-14.1 min) with few residual effects. The only adverse event in the study was mild (grade 1) and consisted of hypotension. CONCLUSION: HSK3486 is a promising anaesthetic candidate with rapid onset of action and clear absorption, distribution, metabolism, excretion (ADME) processes. HSK3486 showed favourable pharmacokinetic characteristics, pharmacodynamic responses and safety at the study dose.


Asunto(s)
Anestésicos , Administración Intravenosa , Administración Oral , Heces , Voluntarios Sanos , Humanos , Tasa de Depuración Metabólica
14.
Cancer Immunol Immunother ; 70(2): 365-376, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32761423

RESUMEN

CD47, an immune checkpoint receptor frequently unregulated in various blood and solid tumors, interacts with ligand SIPRα on innate immune cells, and conveys a "do not eat me" signal to inhibit macrophage-mediated tumor phagocytosis. This makes CD47 a valuable target for cancer immunotherapy. However, the therapeutic utility of CD47-SIRPα blockade monoclonal antibodies is largely compromised due to significant red blood cell (RBCs) toxicities and fast target-mediated clearance as a result of extensive expression of CD47 on normal cells. To overcome these limitations and further improve therapeutic efficacy, we designed IBI322, a CD47/PD-L1 bispecific antibody which attenuated CD47 activity in monovalent binding and blocked PD-L1 activity in bivalent binding. IBI322 selectively bound to CD47+PD-L1+ tumor cells, effectively inhibited CD47-SIRPα signal and triggered strong tumor cell phagocytosis in vitro, but only with minimal impact on CD47 single positive cells such as human RBCs. In addition, as a dual blocker of innate and adaptive immune checkpoints, IBI322 effectively accumulated in PD-L1-positive tumors and demonstrated synergistic activity in inducing complete tumor regression in vivo. Furthermore, IBI322 showed only marginal RBCs depletion and was well tolerated in non-human primates (NHP) after repeated weekly injections, suggesting a sufficient therapeutic window in future clinical development of IBI322 for cancer treatment.


Asunto(s)
Anticuerpos Biespecíficos/uso terapéutico , Antígeno B7-H1/uso terapéutico , Antígeno CD47/antagonistas & inhibidores , Inmunoterapia/métodos , Neoplasias/tratamiento farmacológico , Animales , Anticuerpos Biespecíficos/farmacología , Antígeno B7-H1/farmacología , Humanos , Ratones , Ratones Endogámicos NOD , Neoplasias/patología
15.
Acta Pharmacol Sin ; 42(9): 1535-1546, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33244163

RESUMEN

Vicagrel, a novel irreversible P2Y12 receptor inhibitor, is undergoing phase III trials for the treatment of acute coronary syndromes in China. In this study, we evaluated the pharmacokinetics, mass balance, and metabolism of vicagrel in six healthy male Chinese subjects after a single oral dose of 20 mg [14C]vicagrel (120 µCi). Vicagrel absorption was fast (Tmax = 0.625 h), and the mean t1/2 of vicagrel-related components was ~38.0 h in both plasma and blood. The blood-to-plasma radioactivity AUCinf ratio was 0.55, suggesting preferential distribution of drug-related material in plasma. At 168 h after oral administration, the mean cumulative excreted radioactivity was 96.71% of the dose, including 68.03% in urine and 28.67% in feces. A total of 22 metabolites were identified, and the parent vicagrel was not detected in plasma, urine, or feces. The most important metabolic spot of vicagrel was on the thiophene ring. In plasma pretreated with the derivatization reagent, M9-2, which is a methylated metabolite after thiophene ring opening, was the predominant drug-related component, accounting for 39.43% of the radioactivity in pooled AUC0-8 h plasma. M4, a mono-oxidation metabolite upon ring-opening, was the most abundant metabolite in urine, accounting for 16.25% of the dose, followed by M3-1, accounting for 12.59% of the dose. By comparison, M21 was the major metabolite in feces, accounting for 6.81% of the dose. Overall, renal elimination plays a crucial role in vicagrel disposition, and the thiophene ring is the predominant metabolic site.


Asunto(s)
Fenilacetatos/metabolismo , Fenilacetatos/farmacocinética , Antagonistas del Receptor Purinérgico P2Y/metabolismo , Antagonistas del Receptor Purinérgico P2Y/farmacocinética , Tiofenos/metabolismo , Tiofenos/farmacocinética , Administración Oral , Adulto , Clopidogrel , Humanos , Masculino , Fenilacetatos/sangre , Fenilacetatos/química , Antagonistas del Receptor Purinérgico P2Y/sangre , Antagonistas del Receptor Purinérgico P2Y/química , Tiofenos/sangre , Tiofenos/química
16.
Curr Drug Metab ; 21(6): 471-478, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407265

RESUMEN

BACKGROUND: Green tea can inhibit OATPs, so it may interact with the substrate of OATPs, such as rosuvastatin. OBJECTIVE: This study aimed to investigate the effects of green tea on the pharmacokinetics of rosuvastatin and its mechanism. METHODS: Male Sprague-Dawley rats received different doses of green tea extract (GTE) and (-)- epigallocatechin-3- gallate (EGCG). Caco-2 cells and OATP1B1-HEK293T cells were used in drug uptake and transport assay. The matrix concentrations of rosuvastatin and catechins were determined by ultra-performance liquid chromatographytandem mass spectrometry (UPLC-MS/MS). RESULTS: GTE and EGCG were both found to increase the area under the plasma concentration-time curve (AUC0-∞) of rosuvastatin ((p<0.050). In the Caco-2 cell model, the uptake and transport of rosuvastatin in the GTE groups were 1.94-fold (p<0.001) and 2.11-fold (p<0.050) higher, respectively, than those of the control group. However, in the EGCG group, the uptake and transport of rosuvastatin were decreased by 22.62% and 44.19%, respectively (p<0.050). In the OATP1B1- HEK293T cell model, the OATP1B1-mediated rosuvastatin uptake was decreased by GTE to 35.02% of that in the control (p<0.050) and was decreased by EGCG to 45.61% of that in the control (p<0.050). CONCLUSION: GTE increased the systemic rosuvastatin exposure in rats. The mechanism may include an increase in rosuvastatin absorption and a decrease in liver distribution by inhibiting OATP1B1. EGCG may be the main ingredient of green tea that affects the pharmacokinetic parameters of rosuvastatin. Our results showed the importance of conducting green tea-rosuvastatin study.


Asunto(s)
Camellia sinensis/química , Catequina/análogos & derivados , Interacciones Alimento-Droga , Rosuvastatina Cálcica/farmacocinética , Té/química , Administración Oral , Animales , Células CACO-2 , Catequina/administración & dosificación , Catequina/farmacocinética , Células HEK293 , Humanos , Transportador 1 de Anión Orgánico Específico del Hígado/metabolismo , Masculino , Modelos Animales , Ratas , Ratas Sprague-Dawley , Rosuvastatina Cálcica/administración & dosificación
17.
Expert Opin Drug Metab Toxicol ; 16(6): 527-537, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32436768

RESUMEN

OBJECTIVES: Rifampin (RIF), isoniazid (INH) and pyrazinamide (PZA) are essential components of the short-term first-line anti-tuberculosis (anti-TB) chemotherapy regimen and can cause hepatotoxicity. However, the mechanism of anti-TB drug-induced hepatotoxicity (ATDH) is currently unclear. We investigate the relevant contributions to liver injury and the pathway of the above-mentioned drugs administered alone or in combination. METHODS: UPLC-Q-TOF/MS-based metabolomics, bile acids (BAs) analysis and FXR/SHP detection were used to evaluate the toxicity of these drugs and clarify the underlying metabolism-related pathway. RESULTS: In C57BL/6 mice administered the corrected clinical doses, RIF, INH and PZA could induced hepatotoxicity; with less toxicity in the combination therapy than RIF. The pathological biochemistry, BAs concentration and metabolically regulated FXR/SHP gene expression analyzes in mice were consistent with the metabolomics results. FXR played a role in the hepatotoxicity of anti-tuberculosis drugs in the obeticholic acid treated and FXR-/- mice. Additionally, the purine and lipid metabolic pathways were involved in ATDH. CONCLUSION: ATDH was involved in bile acids and lipid and purine metabolism. The BAs metabolic pathway involvement in mice was validated in TB patients. The noninvasive metabolomics approach is more systemic than routine toxicity evaluation and can be used to assess compound toxicity and the underlying mechanism.


Asunto(s)
Antituberculosos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Receptores Citoplasmáticos y Nucleares/genética , Animales , Antituberculosos/administración & dosificación , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Cromatografía Líquida de Alta Presión , Quimioterapia Combinada , Isoniazida/administración & dosificación , Isoniazida/toxicidad , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Espectrometría de Masas , Metabolómica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Purinas/metabolismo , Pirazinamida/administración & dosificación , Pirazinamida/toxicidad , Rifampin/administración & dosificación , Rifampin/toxicidad
18.
MAbs ; 12(1): 1748322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32275842

RESUMEN

Selecting the dose for efficacy and first-in-human studies of bispecific antibodies (BsAbs) is a challenging process. Herein, positron emission tomography (PET) imaging with 89Zr-labeled IBI322, an anti-CD47/PD-L1 BsAb, was used to optimize the safety and effective therapy dose. By labeling with 89Zr, we aimed to assess the pharmacokinetics (PK), safety, and target engagement of IBI322 with dose escalation dynamic PET imaging in humanized transgenic animal models bearing MC38 tumors (knock-in of hCD47 and hPDL1). 89Zr-labeled IBI322 specifically accumulated in tumors with a tumor-to-muscle ratio of 12.37 ± 1.42 at 168 h (0.22 mg/kg) and the biodistribution of normal tissues from PET imaging could be used for preliminary safety prediction. According to the Pearson correlation analysis between the ELISA-quantified serum concentration and heart uptake (%ID/g) (r = 0.980), a modified Patlak model was proposed. The exploratory target-mediated 50% (0.38 mg/kg) and 90% (0.63 mg/kg) inhibitory mass doses were calculated with the current modified Patlak model. The preliminary pharmacodynamics (PD) study with 0.34 mg/kg revealed that the dose prediction was rational. In conclusion, dose escalation PET imaging with 89Zr-labeled antibodies is promising for PK/PD modeling and safety prediction, and helpful for determining rational dosing for preclinical and clinical trials of BsAbs.


Asunto(s)
Anticuerpos Biespecíficos/farmacocinética , Antineoplásicos/farmacocinética , Inhibidores de Puntos de Control Inmunológico/farmacocinética , Imagen Molecular/métodos , Tomografía de Emisión de Positrones/métodos , Animales , Antígeno B7-H1/antagonistas & inhibidores , Antígeno CD47/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Transgénicos , Distribución Tisular
19.
Cancer Chemother Pharmacol ; 85(3): 509-515, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31654111

RESUMEN

PURPOSE: To evaluate the predictive value of the in vitro chemosensitivity using ATP-TCA method to compare the clinical efficacy of patients with AML. METHODS: Bone marrow or peripheral blood samples were collected from 65 patients with AML, and the in vitro chemosensitivity of four drugs (cytarabine/idarubicin/decitabine/aclacinomycin) was measured by an ATP-tumor chemosensitivity assay. RESULTS: Aclacinomycin and cytarabine had the highest chemosensitivity rates (66.7%, 8/12 and 58.5%, 38/65, respectively), while idarubicin and decitabine had rates of 6.5% (3/46) and 0% (0/35), respectively. Complete remission (CR) was achieved in 66.2% (43/65) of patients, and there was a statistically significant correlation between CR and in vitro chemosensitivity for cytarabine (47.7% vs 18.5%, p = 0.002), but not for the anthracyclines (p = 0.950). In addition, three other factors significantly correlated with CR: disease status (p = 0.005), FLT3-ITD/TKD mutation (p = 0.003) and chemotherapy regimens (p = 0.004). Furthermore, multiple logistic regression analysis revealed that the sensitivity of cytarabine was one of the significant risk factors for CR [hazard ratio (HR) = 5.52; 95% confidence interval (CI) = 1.47-20.70; p = 0.011]. CONCLUSIONS: The in vitro chemosensitivity as tested by ATP-TCA demonstrated a significant correlation with CR for chemotherapy and can be a useful tool to optimize personalized treatments for patients with AML.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Aclarubicina/análogos & derivados , Adulto , Antraciclinas/administración & dosificación , Citarabina/administración & dosificación , Decitabina/administración & dosificación , Femenino , Humanos , Idarrubicina/administración & dosificación , Quimioterapia de Inducción/métodos , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Pronóstico , Inducción de Remisión/métodos , Estudios Retrospectivos , Adulto Joven
20.
Cancer Chemother Pharmacol ; 85(2): 433-441, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31691080

RESUMEN

PURPOSE: To investigate whether coadministration of vindesine is a risk factor for acute kidney injury caused by high-dose methotrexate in patients with hematologic malignancies and identify its mechanism. METHODS: A retrospective analysis was conducted on 211 cycles of HD-MTX therapy in 178 patients with hematological malignancies. Multivariate logistic regression analysis was performed to evaluate whether VDS coadministration was a risk factor for AKI and the inhibitory effect of VDS on MTX was studied in cell models in vitro. RESULTS: The occurrence of AKI was significantly higher in the MTX + VDS group than in the MTX group. Multivariate logistic regression analysis showed that VDS coadministration was an important risk factor for the occurrence of AKI [odds ratio (OR) = 2.62, 95% confidence interval (CI) 1.03-6.66]. After coadministration of VDS, serum MTX concentrations at 24 h, 48 h, and 72 h increased from 0.42 ± 0.46 µmol/L, 0.07 ± 0.01 µmol/L, and 0.03 ± 0.01 µmol/L to 0.98 ± 2.73 µmol/L, 0.18 ± 0.42 µmol/L, and 0.09 ± 0.21 µmol/L (p < 0.05, p < 0.01, and p < 0.01), respectively. Delayed elimination was closely related to AKI (p < 0.001). The transfected cell model results showed that VDS is an inhibitor of the transporters BCRP, MRP2, and OAT1/OAT3. VDS inhibited BCRP and MRP2-mediated transport of MTX with IC50 values of 17.91 µM and 34.73 µM, respectively. CONCLUSIONS: Coadministration of VDS increases HD-MTX-induced AKI in patients with hematologic malignancies, which may be explained by the fact that VDS increases the exposure to and decreases the excretion of MTX by inhibiting OAT1/OAT3, BCRP, and MRP2.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Lesión Renal Aguda/tratamiento farmacológico , Metotrexato/administración & dosificación , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Vindesina/administración & dosificación , Lesión Renal Aguda/metabolismo , Adolescente , Línea Celular , Línea Celular Tumoral , Femenino , Células HEK293 , Humanos , Masculino , Proteína 2 Asociada a Resistencia a Múltiples Medicamentos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...