Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-38660566

RESUMEN

In C. elegans , avoidance behaviors are vital for the nematode's ability to respond to noxious environmental stimuli, including the odorant 1-octanol. To test avoidance to 1-octanol, researchers expose C. elegans to this odorant and determine the time taken to initiate backward locomotion. However, the 1-octanol avoidance assay is sensitive to sensory adaptation, where the avoidance response is reduced due to overexposure to the odorant. Here, we examined two methods to expose nematodes to 1-octanol, using an eyelash hair or a p10 pipette tip, to compare their susceptibility to cause sensory adaptation.

2.
Front Cell Neurosci ; 18: 1367476, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38433863

RESUMEN

During touch, mechanical forces are converted into electrochemical signals by tactile organs made of neurons, accessory cells, and their shared extracellular spaces. Accessory cells, including Merkel cells, keratinocytes, lamellar cells, and glia, play an important role in the sensation of touch. In some cases, these cells are intrinsically mechanosensitive; however, other roles include the release of chemical messengers, the chemical modification of spaces that are shared with neurons, and the tuning of neural sensitivity by direct physical contact. Despite great progress in the last decade, the precise roles of these cells in the sense of touch remains unclear. Here we review the known and hypothesized contributions of several accessory cells to touch by incorporating research from multiple organisms including C. elegans, D. melanogaster, mammals, avian models, and plants. Several broad parallels are identified including the regulation of extracellular ions and the release of neuromodulators by accessory cells, as well as the emerging potential physical contact between accessory cells and sensory neurons via tethers. Our broader perspective incorporates the importance of accessory cells to the understanding of human touch and pain, as well as to animal touch and its molecular underpinnings, which are underrepresented among the animal welfare literature. A greater understanding of touch, which must include a role for accessory cells, is also relevant to emergent technical applications including prosthetics, virtual reality, and robotics.

3.
Neuron ; 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38460523

RESUMEN

KCNQs are voltage-gated K+ channels that control neuronal excitability and are mutated in epilepsy and autism spectrum disorder (ASD). KCNQs have been extensively studied in neurons, but their function in glia is unknown. Using voltage, calcium, and GABA imaging, optogenetics, and behavioral assays, we show here for the first time in Caenorhabditis elegans (C. elegans) that glial KCNQ channels control neuronal excitability by mediating GABA release from glia via regulation of the function of L-type voltage-gated Ca2+ channels. Further, we show that human KCNQ channels have the same role when expressed in nematode glia, underscoring conservation of function across species. Finally, we show that pathogenic loss-of-function and gain-of-function human KCNQ2 mutations alter glia-to-neuron GABA signaling in distinct ways and that the KCNQ channel opener retigabine exerts rescuing effects. This work identifies glial KCNQ channels as key regulators of neuronal excitability via control of GABA release from glia.

4.
BMC Complement Med Ther ; 24(1): 117, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454382

RESUMEN

A meditative 'technique' is conceived as a continuum of different affective states involving mind and body jointly. Meditative practices can involve cognitive effort (e.g., focused attention and open-minded techniques), as well as automatic and implicit practices (e.g., transcendental techniques). The NGALSO tantric self-healing meditation technique is a brief, comprehensive meditation technique relying on mind and body connection. In this study, we aimed to investigate the state and the trait neurophysiological correlates of NGALSO meditation practice. First, 19 EEG channels and a 3-lead ECG signal were recorded from 10 expert meditators (more than 7 years of daily meditation) and 10 healthy inexpert participants (controls) who underwent the same meditative procedure. The neuropsychological profiles of experts and controls were compared. Results showed that expert meditators had significantly higher power spectra on alpha, theta and beta, and a higher sympathetic tone with lower parasympathetic tone after meditation. Conversely, the control group had significantly less power spectra on alpha, theta and beta, and a higher parasympathetic tone with lower sympathetic tone after meditation. A machine learning approach also allowed us to classify experts vs. controls correctly by using only EEG Theta bands before or after meditation. ECG results allowed us to show a significantly higher effort by expert meditators vs. controls, thus suggesting that a higher effort is required for this meditation, in line with the principle 'no pain, no gain' in body and mind.


Asunto(s)
Meditación , Humanos , Sistema Nervioso Periférico
5.
J Clin Med ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398306

RESUMEN

BACKGROUND: Tinnitus, which is often associated with reduced quality of life, depression, and sleep disturbances, lacks a definitive treatment targeting its pathophysiological mechanism. Inflammatory markers like TNF-α have been linked to tinnitus, thereby underlining the necessity for innovative therapies. This case study investigates the potential benefits of a multi-approach rehabilitation intervention involving whole-body cryostimulation (WBC) for a 47-year-old male suffering from chronic neurophysiologic tinnitus, who had underwent various unsuccessful treatments from 2005. METHODS: the patient underwent a personalized, multidisciplinary rehabilitation intervention covering diet, pharmacotherapy, physiotherapy and physical activity classes tailored to the patient's needs and capacities, repetitive transcranial magnetic stimulation (rTMS), and whole-body cryostimulation (WBC). RESULTS: The adjunctive WBC intervention resulted in a significant progressive improvement in tinnitus severity (tinnitus handicap inventory Δ% = -46.3%, VAS tinnitus score Δ% = -40%). Additional positive outcomes were noted in sleep quality (PSQI Δ% = -41.67%), emotional wellbeing (BDI Δ% = -41.2%), and quality of life (SF-36, WHO-5 Δ% = +16.5). CONCLUSIONS: This study supports the existing literature suggesting the potential of WBC as an adjunct in a multi-approach intervention in ameliorating tinnitus severity and tinnitus-associated disorders. However, randomized controlled trials in larger populations, which specifically consider WBC's effects on tinnitus, are necessary to confirm these findings and to explore the mechanisms that underlie the observed improvements.

6.
Med Teach ; : 1-7, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38306667

RESUMEN

As artificial intelligence (AI) assisted diagnosing systems become accessible and user-friendly, evaluating how first-year medical students perceive such systems holds substantial importance in medical education. This study aimed to assess medical students' perceptions of an AI-assisted diagnostic tool known as 'Glass AI.' Data was collected from first year medical students enrolled in a 1.5-week Cell Physiology pre-clerkship unit. Students voluntarily participated in an activity that involved implementation of Glass AI to solve a clinical case. A questionnaire was designed using 3 domains: 1) immediate experience with Glass AI, 2) potential for Glass AI utilization in medical education, and 3) student deliberations of AI-assisted diagnostic systems for future healthcare environments. 73/202 (36.10%) of students completed the survey. 96% of the participants noted that Glass AI increased confidence in the diagnosis, 43% thought Glass AI lacked sufficient explanation, and 68% expressed risk concerns for the physician workforce. Students expressed future positive outlooks involving AI-assisted diagnosing systems in healthcare, provided strict regulations, are set to protect patient privacy and safety, address legal liability, remove system biases, and improve quality of patient care. In conclusion, first year medical students are aware that AI will play a role in their careers as students and future physicians.

7.
PLoS One ; 18(12): e0293921, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117804

RESUMEN

Mental Flexibility oscillates between adaptive variability in behavior and the capacity to restore homeostasis, linked to mental health. It has recently been one of the most investigated abilities in mental and neurological diseases such as Anorexia nervosa and Parkinson's disease, studied for rigidity or cognitive inflexibility. Patients with anorexia nervosa have rigid cognitive processes about food and weight, which leads to restrictive eating and excessive exercise. People who struggle to adapt their cognitive processes and actions to change their diet and exercise habits may have a harder time recovering from the disorder. On the other hand, research suggests that Parkinson's disease patients may have cognitive flexibility impairments that impair their ability to perform daily tasks and adapt to new environments. Although of clinical interest, mental flexibility lacks theoretical liberalization and unified assessment. This study introduces "IntellEGO" a protocol for a new, multidimensional psychometric assessment of flexibility. This assessment evaluates a person's authentic ability to handle daily challenges using cognitive, emotional, and behavioral factors. Since traditional assessments often focus on one domain, we aim to examine flexibility from multiple angles, acknowledging the importance of viewing people as whole beings with mental and physical aspects. The study protocol includes two assessment phases separated by a rehabilitation period. T0, the acute phase upon admission, and T1, the post-rehabilitation phase lasting 15 days for Parkinson's patients and 4 weeks for eating disorder patients, will be assessed. Neuropsychological performance, self-report questionnaires, psychophysiological measures, and neuroendocrine measures will be collected from Anorexia Nervosa and Parkinson's Disease patients during each study phase. The objective of this procedure is to provide clinicians with a comprehensive framework for conducting meticulous assessments of mental flexibility. This framework considers emotional, cognitive, and behavioral factors, and is applicable to various patient populations.


Asunto(s)
Anorexia Nerviosa , Enfermedad de Parkinson , Humanos , Anorexia Nerviosa/psicología , Salud Mental , Ejercicio Físico
8.
J Exp Psychol Appl ; 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37676167

RESUMEN

Testing is increasingly recognized as an important tool in learning. One form of testing often used in lectures, particularly recorded lectures, is interpolated testing wherein tests are interspersed throughout the lecture. Like testing in general, interpolated testing appears to benefit performance on content tests among other outcome variables (e.g., mind wandering). While beneficial, adding testing also increases instructional time. In the present investigation, we examine one strategy to mitigate the costs of this increase in instructional time in the context of recorded lectures. Specifically, we examine the interaction between increasing the playback speed of a recorded lecture and adding interpolated tests. Results demonstrate that the conjoint effects of these two interventions are largely additive. That is, the benefit of testing was as robust in a normal speed lecture and a lecture that was sped up 1.5×. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

9.
Molecules ; 28(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37570694

RESUMEN

Physiologically, smooth muscle cells (SMC) and nitric oxide (NO) produced by endothelial cells strictly cooperate to maintain vasal homeostasis. In atherosclerosis, where this equilibrium is altered, molecules providing exogenous NO and able to inhibit SMC proliferation may represent valuable antiatherosclerotic agents. Searching for dual antiproliferative and NO-donor molecules, we found that furoxans significantly decreased SMC proliferation in vitro, albeit with different potencies. We therefore assessed whether this property is dependent on their thiol-induced ring opening. Indeed, while furazans (analogues unable to release NO) are not effective, furoxans' inhibitory potency parallels with the electron-attractor capacity of the group in 3 of the ring, making this effect tunable. To demonstrate whether their specific block on G1-S phase could be NO-dependent, we supplemented SMCs with furoxans and inhibitors of GMP- and/or of the polyamine pathway, which regulate NO-induced SMC proliferation, but they failed in preventing the antiproliferative effect. To find the real mechanism of this property, our proteomics studies revealed that eleven cellular proteins (with SUMO1 being central) and networks involved in cell homeostasis/proliferation are modulated by furoxans, probably by interaction with adducts generated after degradation. Altogether, thanks to their dual effect and pharmacological flexibility, furoxans may be evaluated in the future as antiatherosclerotic molecules.


Asunto(s)
Donantes de Óxido Nítrico , Óxido Nítrico , Donantes de Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular , Proteómica , Proliferación Celular , Células Cultivadas , Miocitos del Músculo Liso
10.
Nutrients ; 15(13)2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37447165

RESUMEN

Over the last two decades, obesity has reached pandemic proportions in several countries, and expanding evidence is showing its contribution to several types of malignancies, including breast cancer (BC). The conditioned medium (CM) from mature adipocytes contains a complex of secretes that may mimic the obesity condition in studies on BC cell lines conducted in vitro. Here, we report a transcriptomic analysis on MCF-7 BC cells exposed to adipocyte-derived CM and focus on the predictive functional relevance that CM-affected pathways/processes and related biomarkers (BMs) may have in BC response to obesity. CM was demonstrated to increase cell proliferation, motility and invasion as well as broadly alter the transcript profiles of MCF-7 cells by significantly modulating 364 genes. Bioinformatic functional analyses unraveled the presence of five highly relevant central hubs in the direct interaction networks (DIN), and Kaplan-Meier analysis sorted the CCAAT/enhancer binding protein beta (CEBP-ß) and serine/threonine-protein kinase PLK1 (PLK1) as clinically significant biomarkers in BC. Indeed, CEBP-ß and PLK1 negatively correlated with BC overall survival and were up-regulated by adipocyte-derived CM. In addition to their known involvement in cell proliferation and tumor progression, our work suggests them as a possible "deus ex machina" in BC response to fat tissue humoral products in obese women.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/metabolismo , Células MCF-7 , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Proliferación Celular , Línea Celular Tumoral
11.
Int J Mol Sci ; 24(11)2023 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-37298679

RESUMEN

Epiretinal membranes (ERMs) are sheets of tissue that pathologically develop in the vitreoretinal interface leading to progressive vision loss. They are formed by different cell types and by an exuberant deposition of extracellular matrix proteins. Recently, we reviewed ERMs' extracellular matrix components to better understand molecular dysfunctions that trigger and fuel the onset and development of this disease. The bioinformatics approach we applied delineated a comprehensive overview on this fibrocellular tissue and on critical proteins that could really impact ERM physiopathology. Our interactomic analysis proposed the hyaluronic-acid-receptor cluster of differentiation 44 (CD44) as a central regulator of ERM aberrant dynamics and progression. Interestingly, the interaction between CD44 and podoplanin (PDPN) was shown to promote directional migration in epithelial cells. PDPN is a glycoprotein overexpressed in various cancers and a growing body of evidence indicates its relevant function in several fibrotic and inflammatory pathologies. The binding of PDPN to partner proteins and/or its ligand results in the modulation of signaling pathways regulating proliferation, contractility, migration, epithelial-mesenchymal transition, and extracellular matrix remodeling, all processes that are vital in ERM formation. In this context, the understanding of the PDPN role can help to modulate signaling during fibrosis, hence opening a new line of therapy.


Asunto(s)
Membrana Epirretinal , Vitreorretinopatía Proliferativa , Humanos , Membrana Epirretinal/metabolismo , Membrana Epirretinal/patología , Proteínas de la Matriz Extracelular , Fibrosis , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Factores de Transcripción , Vitreorretinopatía Proliferativa/metabolismo
12.
Cell Res ; 33(7): 487-488, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37142672
13.
STAR Protoc ; 4(2): 102241, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37104092

RESUMEN

Research rigor can be enhanced by pairing genetic tools with pharmacology and manipulations of solutes or ions. Here, we present a protocol for treating C. elegans with pharmacological agents, osmoles, and salts. We describe steps for agar plate supplementation, addition of the compound to the polymerized plates, and using liquid culture for exposure to the chemical. Treatment type depends on the stability and solubility of each compound. This protocol is applicable to both behavioral and in vivo imaging experiments. For complete details on the use and execution of this protocol, please refer to Wang et al. (2022),1 Fernandez-Abascal et al. (2022),2 and Johnson et al. (2020).3.

14.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37047404

RESUMEN

Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1ß, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.


Asunto(s)
Fumar Cigarrillos , Ratones , Humanos , Animales , Proteómica , Fenotipo , Miocitos del Músculo Liso/metabolismo , Proteínas Quinasas/metabolismo , Células Cultivadas
15.
iScience ; 25(12): 105684, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36567707

RESUMEN

Glia and accessory cells regulate the microenvironment around neurons and primary sensory cells. However, the impact of specific glial regulators of ions and solutes on functionally diverse primary cells is poorly understood. Here, we systemically investigate the requirement of ion channels and transporters enriched in Caenorhabditis elegans Amsh glia for the function of chemosensory neurons. Although Amsh glia ablated worms show reduced function of ASH, AWC, AWA, and ASE neurons, we show that the loss of glial enriched ion channels and transporters impacts these neurons differently, with nociceptor ASH being the most affected. Furthermore, our analysis underscores the importance of K+, Cl-, and nucleoside homeostasis in the Amphid sensory organ and uncovers the contribution of glial genes implicated in neurological disorders. Our findings build a unique fingerprint of each glial enriched ion channel and transporter and may provide insights into the function of supporting cells of mammalian sensory organs.

16.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36362324

RESUMEN

Krabbe disease (KD) is a rare autosomal recessive disorder caused by mutations in the galactocerebrosidase gene (GALC). Defective GALC causes aberrant metabolism of galactolipids present almost exclusively in myelin, with consequent demyelinization and neurodegeneration of the central and peripheral nervous system (NS). KD shares some similar features with other neuropathies and heterozygous carriers of GALC mutations are emerging with an increased risk in developing NS disorders. In this work, we set out to identify possible variations in the proteomic profile of KD-carrier brain to identify altered pathways that may imbalance its homeostasis and that may be associated with neurological disorders. The differential analysis performed on whole brains from 33-day-old twitcher (galc -/-), heterozygous (galc +/-), and wild-type mice highlighted the dysregulation of several multifunctional factors in both heterozygous and twitcher mice. Notably, the KD-carrier mouse, despite its normal phenotype, presents the deregulation of vimentin, receptor of activated protein C kinase 1 (RACK1), myelin basic protein (MBP), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNP), transitional endoplasmic reticulum ATPase (VCP), and N-myc downstream regulated gene 1 protein (NDRG1) as well as changes in the ubiquitinated-protein pattern. Our findings suggest the carrier may be affected by dysfunctions classically associated with neurodegeneration: (i) alteration of (mechano) signaling and intracellular trafficking, (ii) a generalized affection of proteostasis and lipid metabolism, with possible defects in myelin composition and turnover, and (iii) mitochondrion and energy supply dysfunctions.


Asunto(s)
Leucodistrofia de Células Globoides , Enfermedades Neurodegenerativas , Animales , Ratones , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/metabolismo , Proteómica , Modelos Animales de Enfermedad , Galactosilceramidasa/genética , Galactosilceramidasa/metabolismo
17.
PLoS Genet ; 18(10): e1010488, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36315586

RESUMEN

Transcriptional adaptation is a powerful gene regulation mechanism that can increase genetic robustness. Transcriptional adaptation occurs when a gene is mutated and is mediated by the mutant RNA, rather than by protein feedback loops. We show here that transcriptional adaptation occurs in the C. elegans clh family of Cl- channels and that it requires exon-junction complex (EJC) proteins RNP-4, MAG-1, and eiF4AIII. Depending on which exons are deleted in distinct clh-1 alleles, different clh genes are regulated in an EJC-dependent manner. Our results support the idea that different transcriptional adaptation outcomes may be directed by the differential interaction of the EJC with its target mutant RNAs.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al ARN/genética , ARN Mensajero/genética , Exones/genética , Núcleo Celular/metabolismo , Empalme del ARN/genética , ARN/metabolismo , Canales de Cloruro/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
18.
Cells ; 11(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-36010606

RESUMEN

Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell-matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin ß1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein-protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.


Asunto(s)
Membrana Epirretinal , Membrana Epirretinal/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteómica/métodos , Ciencia Traslacional Biomédica , Cuerpo Vítreo/metabolismo
20.
Commun Biol ; 5(1): 456, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550602

RESUMEN

Mechanosignaling, initiated by extracellular forces and propagated through the intracellular cytoskeletal network, triggers signaling cascades employed in processes as embryogenesis, tissue maintenance and disease development. While signal transduction by transcription factors occurs downstream of cellular mechanosensing, little is known about the cell intrinsic mechanisms that can regulate mechanosignaling. Here we show that transcription factor PREP1 (PKNOX1) regulates the stiffness of the nucleus, the expression of LINC complex proteins and mechanotransduction of YAP-TAZ. PREP1 depletion upsets the nuclear membrane protein stoichiometry and renders nuclei soft. Intriguingly, these cells display fortified actomyosin network with bigger focal adhesion complexes resulting in greater traction forces at the substratum. Despite the high traction, YAP-TAZ translocation is impaired indicating disrupted mechanotransduction. Our data demonstrate mechanosignaling upstream of YAP-TAZ and suggest the existence of a transcriptional mechanism actively regulating nuclear membrane homeostasis and signal transduction through the active engagement/disengagement of the cell from the extracellular matrix.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Factores de Transcripción , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mecanotransducción Celular/fisiología , Membrana Nuclear/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...